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Abstract Fujita’s proligand method developed originally for combinatorial enumer-
ation under point groups (Fujita in Theor Chem Acc 113:73–79, 2005) is extended to
meet the group hierarchy, which stems from the stereoisogram approach for integrat-
ing geometric aspects and stereoisomerism in stereochemistry (Fujita in J Org Chem
69:3158–3165, 2004). Thereby, it becomes applicable to enumeration under respec-
tive levels of the group hierarchy. Combinatorial enumerations are conducted to count
inequivalent pairs of (self-)enantiomers under a point group, inequivalent quadruplets
of RS-stereoisomers under an RS-stereoisomeric group, inequivalent sets of stereoiso-
mers under a stereoisomeric group, and inequivalent sets of isoskeletomers under
an isoskeletal group. In these enumerations, stereoskeletons of ligancy 4 are used as
examples, i.e., a tetrahedral skeleton, an allene skeleton, an ethylene skeleton, an oxi-
rane skeleton, a square planar skeleton, and a square pyramidal skeleton. Two kinds
of compositions are used for the purpose of representing molecular formulas in an
abstract fashion, that is to say, the compositions for differentiating proligands hav-
ing opposite chirality senses and the compositions for equalizing proligands having
opposite chirality senses. Thereby, the classifications of isomers are accomplished in
a systematic fashion.
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1 Introduction

Pólya’s theorem [1,2] has long been a standard method for combinatorial enumeration,
as found in many reviews [3,4] and books [5–8]. It has been widely applied to chemistry
as summarized in reviews [9–12] and books [13–15], where chemical compounds are
regarded as two-dimensional (2D) structures (or graphs). As found in Pólya’s original
paper [1,2], such 2D structures (or graphs) are considered to belong to permutation
groups, where ligands (substituents) are regarded as 2D structures (or graphs).

To enumerate chemical compounds as three-dimensional (3D) structures, the pro-
ligand method [16–18] has been developed by us, where Pólya’s cycle indices (CIs)
were extended to cycle indices with chirality fittingness (CI-CFs). The crux of the
proligand method is the concept of sphericities for classifying cycles to homospheric,
enantiospheric, and hemispheric ones, as discussed in a review [19]. Thereby, each
classified cycle is characterized by chirality fittingness (CF) for accommodating pro-
ligands, which are presumed to be abstract entities for representing concrete ligands
(substituents) having 3D structures.

Fujita’s proligand method and related methods have been applied to enumerate
alkanes and mono-substituted alkanes [20–22], cubane derivatives [23–25], and other
molecular entities, as summarized in reviews [19,26] and books [27,28]. The concept
of sphericities for cycles is correlated to cyclic subgroups of point groups [16], so that
such 3D structures are presumed to belong to point groups in Fujita’s proligand method,
where ligands having 3D structures are regarded as proligands with chirality/achirality.

We have recently developed the stereoisogram approach [29–32], where the permu-
tation groups are restricted to RS-permutation groups and integrated with point groups,
so as to generate RS-stereoisomeric groups. Stereoisograms have been developed as
diagrammatic representations of each RS-stereoisomeric group and its subgroups.
By starting from RS-stereoisomeric groups, we are able to construct stereoisomeric
groups and isoskeletal groups as groups of higher hierarchy [33–36]. For the purpose
of comprehending the relationships between these higher-level groups, more quanti-
tative discussions are desirable, where Fujita’s proligand method under point groups
should be extended to be applicable to these higher-level groups.

The present article is devoted to an extension of Fujita’s proligand method to cover
such higher-level groups as RS-stereoisomeric groups, stereoisomeric groups, and
isoskeletal groups, where various stereoskeletons of ligancy 4 are examined as exam-
ples in an integrated manner. Thereby, the concept of sphericities of cycles, which
is based originally on point groups, can be extended to comprehend the higher-level
groups.

2 Theoretical formulations

2.1 Stereoskeletons of ligancy 4

Representative stereoskeletons of ligancy 4 are shown in Fig. 1. The four positions
of each stereoskeleton construct an equivalence class (orbit), which is governed by a
coset representation (CR) of the point group of the stereoskeleton. The four positions

123



1012 J Math Chem (2015) 53:1010–1053

Fig. 1 Stereoskeletons of
ligancy 4. The point-group
symmetry of each stereoskeleton
is shown by using the Schönflies
notation. The symbol M
represents a central metal
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of a tetrahedral skeleton 1 construct an orbit governed by the CR Td(/C3v), where
the resulting set of products of cycles is isomorphic to the symmetric group of degree
4 (S[4]) [27,37]. In a similar way, the other stereoskeletons collected in Fig. 1 are
characterized by the following coset representations (CRs): the CR D2d(/Cs) for
an allene skeleton 2 [38], the CR D2h(/C′′

s ) for an ethylene skeleton 3 [39], the CR
C2v(/C1) for an oxirane skeleton 4 [40], the CR D4h(/C′′

2v) for a square planar skeleton
5 (SP-4) [41], and the CR C4v(/C′

s) for a square pyramidal skeleton 6 (SPY -4).
These CRs are isomorphic to the subgroups of the symmetric group of degree 4
(S[4]).

It should be noted that these CRs of the point groups are different in the action
onto chiral ligands from the subgroups of the symmetric group of degree 4 (S[4]) [42].
Table 1 lists the CR Td(/C3v) of the point group Td in the upper-left and lower-left
parts (designated gray letters A and B) as well as the symmetric group of degree
4 (S[4]) [42] in the upper-left and upper-right parts (designated by gray letters A
and C).

Although each product of cycles in the lower-left part (designated by B) has the
same form as that of the upper-right part (designated by C), the former is attached
by an overbar whereas the latter is not attached. This means that the former (e.g.,
(1)(2 4)(3) for σd(1)) is different in the action onto chiral ligands from the latter (e.g.,
(1)(2 4)(3): cf. σ̃d(1) ∈ Tdσ̃̂I described later).

2.2 RS-stereoisomeric groups

By starting from the point group Td , the stereoisogram approach derives the corre-
sponding RS-stereoisomeric group denoted by the symbol Tdσ̃̂I as follows [29,33]:
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Table 1 Operations of Tdσ̃̂I and coset representation of Tdσ̃̂I (/C3vσ̃̂I ) versus operations of Oh and coset

representation of Oh(/D3d ) in comparison with S[4]
σ̂I

Tdσ̃̂I = Td + σ̃Td

= T + σT + σ̃T + ̂I T, (1)

where σ̃ is selected from the lower-left part (B) by omitting an overbar (e.g., (1)(2 4)(3)

for σ̃d(1) which is derived from (1)(2 4)(3) for σd(1)), and ̂I (∼ (1)(2)(3)(4)) is
calculated to be ̂I = σ̃d(1)σd(1). The cosets of Eq. 1 correspond to the four parts of
Table 1: T to the upper-left part (A), σT to the lower-left part (B), σ̃T to the upper-right
part (C), and ̂I T to the lower-right part (D).

As shown in Table 1, the RS-stereoisomeric group Tdσ̃̂I is isomorphic to the point
group Oh . The point group Oh has 33 subgroups up to conjugacy, which have been
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discussed in detail in terms of a non-redundant set of subgroups (SSG) [43]. Because
of the isomorphism between Tdσ̃̂I and Oh , the group Tdσ̃̂I has 33 subgroups up to
conjugacy, which are summarized to give a non-redundant set of subgroups (SSG) for
Tdσ̃̂I as follows [44]:

SSGTdσ̃̂I
=

{

1
C1,

2
C2,

3
Cσ̃ ,

4
Cσ̂ ,

5
Cs,

6
C

̂I ,
7

C3,
8

S̃4,
9

S4,
10
D2,

11
C2σ̃ ,

12
C2σ̂ ,

13
C2v,

14
Csσ̃ σ̂ ,

15
C2̂I ,

16
Csσ̃̂I ,

17
C3σ̃ ,

18
C3v,

19
C3̂I ,

20
D2σ̃ ,

21
S̃4σ̂ ,

22
S̃4̂I ,

23
D2d ,

24
S4σ̃ σ̂ ,

25
D2̂I ,

26
C2vσ̃̂I ,

27
T,

28
C3vσ̃̂I ,

29
D2dσ̃̂I ,

30
Tσ̃ ,

31
T

̂I ,
32
Td ,

33
Tdσ̃̂I

}

, (2)

where the subgroups are aligned in the ascending order of their orders. For the conve-
nience of cross reference, sequential numbers from 1 to 33 are attached to the respective
subgroups. The four positions of the tetrahedral skeleton 1 are governed by the CR
Tdσ̃̂I (/C3vσ̃̂I ) under the RS-stereoisomeric group Tdσ̃̂I .

It should be noted that the RS-stereoisomeric group Tdσ̃̂I formulated as above is
effective to treat stereoskeletons other than those of ligancy 4. For example, the CR
Td(/Cs) for characterizing twelve hydrogens on the methylene groups of an adaman-
tane skeleton [37] can be treated by Tdσ̃̂I , where the CR Tdσ̃̂I (/Csσ̃̂I ) is taken into
consideration.

2.3 Reflective symmetric groups

If we restrict our discussions to stereoskeletons of ligancy 4, the RS-stereoisomeric
group Tdσ̃̂I (strictly speaking, the CR Tdσ̃̂I (/C3vσ̃̂I )) can be alternatively constructed
by starting from the symmetric group of degree 4 (S[4]). Note that the latter group
is designated by the symbol S[4] with a superscript to avoid confusion with the point
group S4 of order 4 (cf. the No. 9 subgroup of Eq. 2).

Let us consider a direct product S[4] × {I, σ }, where the symbol σ is a product
of cycles for a reflection (e.g., σ = (1)(2 4)(3) ∼ σd(1)). The direct product can be
interpreted to be a group denoted by the symbol S[4]

σ̂I
:

S[4]
σ̂I

= S[4] + σS[4]

= S[4]
10 + σS[4]

10 + σ̃S[4]
10 + ̂I S[4]

10 , (3)

which is here called a reflective symmetric group. The reflective symmetric group
S[4]

σ̂I
(Eq. 3) is derived in a similar way to Eq. 1, where we use the following coset

decomposition:

S[4] = S[4]
10 + σ̃S[4]

10 , (4)
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because S[4] is isomorphic to Tσ̃ ({A, C}) and S[4]
10 (= A[4]: the alternating group of

degree 4) is isomorphic to T ({A}). The reflective symmetric group S[4]
σ̂I

(Eq. 3) is
isomorphic to the RS-stereoisomeric group Tdσ̃̂I (Eq. 1). These two groups can be
equalized if we restrict our discussions to stereoskeletons of ligancy 4.

Because of the isomorphism between the reflective symmetric group S[4]
σ̂I

and the

RS-stereoisomeric group Tdσ̃̂I , the non-redundant set of subgroups (SSG) for S[4]
σ̂I

(Eq. 3) is obtained as follows:

SSGS[4]
σ̂I

=
{

1

S[4]
1 ,

2

S[4]
2 ,

3

S[4]
3 ,

4

S[4]
1σ̂ ,

5

S[4]
1σ ,

6

S[4]
1̂I

,

7

S[4]
4 ,

8

S[4]
5 ,

9

S[4]
2σ ′ ,

10

S[4]
6 ,

11

S[4]
7 ,

12

S[4]
2σ̂ ,

13

S[4]
2σ ,

14

S[4]
3σ σ̂ ,

15

S[4]
2̂I

,

16

S[4]
3σ̂I

,

17

S[4]
8 ,

18

S[4]
4σ ,

19

S[4]
4̂I

,

20

S[4]
9 ,

21

S[4]
5σ σ̂ ,

22

S[4]
5σ ′

̂I
,

23

S[4]
6σ ,

24

S[4]
7σ ′σ̂ ,

25

S[4]
6̂I

,

26

S[4]
7σ̂I

,

28

S[4]
8σ̂I

,

27

S[4]
10 ,

29

S[4]
9σ̂I

,

30

S[4],
31

S[4]
10̂I

,

32

S[4]
10σ ,

33

S[4]
σ̂I

}

, (5)

where the symbol S[4]
i (i = 1–11; S[4]

1 = {I } and S[4]
11 = S[4]) constructs a non-

redundant set of subgroups for S[4]. The subscript σ or σ ′ indicates the membership of
products of cycles selected from the B part of Table 1. The subscript ̂I or σ̂ indicates
the membership of products of cycles selected from the D part of Table 1.

Just as the subgroups of the RS-stereoisomeric group Tdσ̃̂I are classified to five

types [44], the subgroups of the reflective symmetric group S[4]
σ̂I

are classified to five
types, which correspond to stereoisograms of five types (type I–V).

The subgroup S[4]
10 (∼= T) and its subgroups listed as follows correspond to type-III

stereoisograms:

S[4]
1

∼= C1
1= {I } (6)

S[4]
2

∼= C2
2= {I, C2(3)} (7)

S[4]
4

∼= C3
7= {I, C3(1), C2

3(1)} (8)

S[4]
6

∼= D2
10= {I, C2(1), C2(2), C2(3)} (9)

S[4]
10

∼= T 27= {A} (10)

The concrete elements of each subgroup can be obtained by referring to Table 1. For
example, the elements of S[4]

6 (Eq. 9) are obtained to be

{(1)(2)(3)(4), (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}
by referring to the rows corresponding to {I, C2(1), C2(2), C2(3)} in Table 1. When
referring to the previous papers [34,42], note that the symbol S[4]

7 in the previous

papers should be replaced by the present symbol S[4]
6 (Eq. 9).
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The subgroup S[4] (∼= Tσ̃ ) is the symmetric group of degree 4. Its subgroups listed
as follows correspond to type-II stereoisograms:

S[4]
3

∼= Cσ̃
3= {I, σ̃d(1)} (11)

S[4]
5

∼= S̃4
8= {I,˜S4(3), C2(3),˜S

3
4(3)} (12)

S[4]
7

∼= C2σ̃
11= {I, C2(3), σ̃d(1), σ̃d(6)} (13)

S[4]
8

∼= C3σ̃
17= {I, C3(1), C2

3(1), σ̃d(1), σ̃d(2), σ̃d(3)} (14)

S[4]
9

∼= D2σ̃
20= {I, C2(1), C2(2), C2(3), σ̃d(1), σ̃d(6),˜S4(3),˜S

3
4(3)} (15)

S[4] ∼= Tσ̃
30= {A, C}, (16)

where each subgroup contains products of cycles selected from the C-part in addition
to the A-part of Table 1.

The subgroup S[4]
10σ (∼= Td ) and its subgroups listed as follows correspond to type-V

stereoisograms:

S[4]
1σ

∼= Cs
5= {I, σd(1)} (17)

S[4]
2σ ′ ∼= S4

9= {I, S4(3), C2(3), S3
4(3)} (18)

S[4]
2σ

∼= C2v
13= {I, C2(3), σd(1), σd(6)} (19)

S[4]
4σ

∼= C3v
18= {I, C3(1), C2

3(1), σd(1), σd(2), σd(3)} (20)

S[4]
6σ

∼= D2d
22= {I, C2(1), C2(2), C2(3), σd(1), σd(6), S4(3), S3

4(3)} (21)

S[4]
10σ

∼= Td
32= {A, B}, (22)

where each subgroup contains products of cycles selected from the B-part in addition
to the A-part of Table 1.

The subgroup S[4]
10̂I

(∼= T
̂I ) and its subgroups listed as follows correspond to type-I

stereoisograms:

S[4]
1σ̂

∼= Cσ̂
4= {I, ̂C2(3)} (23)

S[4]
1̂I

∼= C
̂I

6= {I, ̂I } (24)

S[4]
2σ̂

∼= C2σ̂
12= {I, C2(3), ̂C2(1), ̂C2(2)} (25)

S[4]
2̂I

∼= C2̂I
15= {I, C2(3), ̂C2(3), ̂I } (26)

S[4]
4̂I

∼= C3̂I
19= {I, C3(1), C2

3(1),
̂I , ̂C3(1), ̂C2

3(1)} (27)

S[4]
6̂I

∼= D2̂I
25= {I, C2(1), C2(2), C2(3), ̂I , ̂C2(1), ̂C2(2), ̂C2(3)} (28)

S[4]
10̂I

∼= T
̂I

31= {A, D} (29)
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where each subgroup contains products of cycles selected from the D-part in addition
to the A-part of Table 1.

The group S[4]
σ̂I

(∼= Tdσ̃̂I ) and its subgroups listed as follows correspond to type-IV
stereoisograms:

S[4]
3σ σ̂

∼= Csσ̃ σ̂
14= {I, σ̃d(1), ̂C2(3), σd(6)} (30)

S[4]
3σ̂I

∼= Csσ̃̂I
16= {I, σ̃d(1), ̂I , σd(1)} (31)

S[4]
5σ σ̂

∼= S̃4σ̂

21= {I,˜S4(3), C2(3),˜S
3
4(3),

̂C2(1), ̂C2(2), σd(1), σd(6)} (32)

S[4]
5σ ′

̂I
∼= S̃4̂I

22= {I,˜S4(3), C2(3),˜S
3
4(3),

̂I , ̂C2(3), S4(3), S3
4(3)} (33)

S[4]
7σ ′σ̂

∼= S4σ̃ σ̂
24= {I, C2(3), σ̃d(1), σ̃d(6), ̂C2(1), ̂C2(2), S4(3), S3

4(3)} (34)

S[4]
7σ̂I

∼= C2vσ̃̂I
26= {I, C2(3), σ̃d(1), σ̃d(6), ̂I , ̂C2(3), σd(1), σd(6)} (35)

S[4]
8σ̂I

∼= C3vσ̃̂I
28= {I, C3(1), C2

3(1), σ̃d(1), σ̃d(2), σ̃d(3), ̂I , ̂C3(1), ̂C2
3(1),

σd(1), σd(2), σd(3)} (36)

S[4]
9σ̂I

∼= D2dσ̃̂I
29= {I, C2(1), C2(2), C2(3), σ̃d(1), σ̃d(6),˜S4(3),˜S

3
4(3),

̂I , ̂C2(1), ̂C2(2), ̂C2(3), σd(1), σd(6), S4(3), S3
4(3)} (37)

S[4]
σ̂I

∼= Tdσ̃̂I
33= {A, B, C, D}. (38)

Note that the subgroups represented by Eqs. 30–38 contain products of cycles selected
from the A-, B-, C-, and D-parts of Table 1.

The tetrahedral skeleton 1 belongs to the point group Td , from which the RS-
stereoisomeric group Tdσ̃̂I (∼= S[4]

σ̂I
) is derived. In a similar way, the allene skeleton 2

corresponds to the RS-stereoisomeric group D2dσ̃̂I (∼= S[4]
9σ̂I

), where the point group

D2d is extended to have parts represented by σ̃ and ̂I . The ethylene skeleton 3 cor-
responds to the RS-stereoisomeric group D2̂I (∼= S[4]

6̂I
), where the point group D2h

is remain unchanged to give D2̂I . The oxirane skeleton 4 corresponds to the RS-
stereoisomeric group C2vσ̃̂I (∼= S[4]

7σ̂I
), where the point group C2v is extended to have

parts represented by σ̃ and ̂I . The square planar skeleton 5 (SP-4) corresponds to
the RS-stereoisomeric group D4̂I (∼= D2dσ̃̂I

∼= S[4]
9σ̂I

), where the point group D4h is
remain unchanged to give D4̂I . The square pyramidal skeleton 6 (SPY -4) corresponds
to the RS-stereoisomeric group C4vσ̃̂I (∼= D2dσ̃̂I

∼= S[4]
9σ̂I

), where the point group C4v

is extended to have parts represented by σ̃ and ̂I .
If our discussions are restricted to the stereoskeletons of ligancy 4, the RS-

stereoisomeric groups described in the preceding paragraphs can be commonly treated
as subgroups of the reflective symmetric group S[4]

σ̂I
. This fact indicates the importance

of the CRs of RS-stereoisomeric groups. For example, the CR Tdσ̃̂I (/C3vσ̃̂I ) is identi-

cal with the reflective symmetric group S[4]
σ̂I

, where the number of substitution positions
is calculated to be |Tdσ̃̂I |/|C3vσ̃̂I | = 48/12 = 4.
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2.4 Group hierarchy

The hierarchy of groups has been discussed to comprehend stereoisomerism [34,36,
45], where such groups as concerning stereoisomerism are categorized so as to give a
hierarchy represented by

point groups (PG) ⊆ RS-stereoisomeric groups (RS-SIG) ⊆ stereoisomeric
groups (SIG) ⊆ isoskeletal groups (ISG).

This group hierarchy can be more quantitatively discussed by adopting the reflective
symmetric group S[4]

σ̂I
(Eq. 3), if our discussions are restricted to the stereoskeletons

of ligancy 4 (Fig. 1). The results reported in our previous reports are cited as follows
after modified from the viewpoint of the reflective symmetric group S[4]

σ̂I
:

1. Hierarchy for the tetrahedral skeleton 1 [33]:

S[4]
10σ (Td) ⊂ S[4]

σ̂I
(Tdσ̃̂I ) = S[4]

σ̂I
= S[4]

σ̂I
, (39)

where the orders of these groups are calculated to be |S[4]
10σ | (= |Td |) = 24, |S[4]

σ̂I
|

(= |Tdσ̃̂I |) = 48, |S[4]
σ̂I

| = 48, and |S[4]
σ̂I

| = 48.
2. Hierarchy for the allene skeleton 2 [34]:

S[4]
6σ (D2d) ⊂ S[4]

9σ̂I
(D2dσ̃̂I ) = S[4]

9σ̂I
⊂ S[4]

σ̂I
, (40)

where the orders of these groups are calculated to be |S[4]
6σ | (= |D2d |) = 8, |S[4]

9σ̂I
|

(= |D2dσ̃̂I |) = 16, |S[4]
9σ̂I

| = 16, and |S[4]
σ̂I

| = 48.
3. Hierarchy for the ethylene skeleton 3 [35]:

S[4]
6̂I

(D2h) = S[4]
6̂I

(D2̂I ) ⊂ S[4]
9σ̂I

⊂ S[4]
σ̂I

, (41)

where the orders of these groups are calculated to be |S[4]
6̂I

| (= |D2h |) = 8, |S[4]
6̂I

|
(= |D2̂I |) = 8, |S[4]

9σ̂I
| = 16, and |S[4]

σ̂I
| = 48.

4. Hierarchy for the oxirane skeleton 4:

S[4]
2σ̂ (C2v) ⊂ S[4]

6̂I
(C2vσ̃̂I ) ⊂ S[4]

9σ̂I
⊂ S[4]

σ̂I
, (42)

where the orders of these groups are calculated to be |S[4]
2σ̂ | (= |C2v|) = 4, |S[4]

6̂I
|

(= C2vσ̃̂I |) = 8, |S[4]
9σ̂I

| = 16, and |S[4]
σ̂I

| = 48. Note that S[4]
2σ̂ corresponds to the

point group C2v and that S[4]
6̂I

corresponds to C2vσ̃̂I derived from the point group
C2v . This exhibits a different behavior from Eq. 35.

5. Hierarchy for the square planar skeleton 5 [36]:

S[4]
9σ̂I

(D4h) = S[4]
9σ̂I

(D4̂I ) ⊂ S[4]
σ̂I

= S[4]
σ̂I

, (43)
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where the orders of these groups are calculated to be |S[4]
9σ̂I

| (= |D4h |) = 16, |S[4]
9σ̂I

|
(= |D4̂I |) = 16, |S[4]

σ̂I
| = 48, and |S[4]

σ̂I
| = 48.

6. Hierarchy for the square pyramidal skeleton 6:

S[4]
5σ σ̂ (C4v) ⊂ S[4]

9σ̂I
(C4vσ̃̂I ) ⊂ S[4]

σ̂I
= S[4]

σ̂I
, (44)

where the orders of these groups are calculated to be |S[4]
5σ σ̂ | (= |C4v|) = 8, |S[4]

9σ̂I
|

(= |C4vσ̃̂I |) = 16, |S[4]
σ̂I

| = 48, and |S[4]
σ̂I

| = 48.

When referring to the previous papers [34,35], the symbol S[4]
7 in the previous

papers should be replaced by the present symbol S[4]
6 (D2) for the sake of consistency

of symbols. Note that the RS-stereoisomeric group D2dσ̃̂I , D4̂I , and C4vσ̃̂I , which are
derived from the respective point groups, are commonly correlated to the subgroup
S[4]

9σ̂I
of order 16.

2.5 Combinatorial enumerations

The concept of sphericities of cycles developed for the proligand method [16] can be
extended to treat reflective symmetric groups such as S[4]

σ̂I
, because the permutation

group P for Lemmas 1 and 2 of [16] can be equalized to S[4]
σ̂I

(or to S[n]
σ̂I

in general).
This means that the concept of sphericity indices is also extended to meet the present
cases concerning S[4]

σ̂I
(or generally S[n]

σ̂I
). Thus, the sphericity index (SI) ad is assigned

to a homospheric cycle which is an odd-cycle contained in a permutation of S[4]
σ̂I

−S[4],
the SI cd is assigned to an enantiospheric cycle which is an even-cycle contained in a
permutation of S[4]

σ̂I
− S[4], and the SI bd is assigned to a hemispheric cycle which is

an odd- or even-cycle contained in a permutation of S[4]. Thereby, each permutation
of S[4]

σ̂I
is characterized by a product of sphericity indices, which is collected in the

‘product-of-SIs’ column of Table 1.
According to the proligand method [16–18], a cycle index with chirality fittingness

(CI-CF) is calculated to characterize each of the subgroups appearing in Eqs. 39–44,
where the products of SIs at issue (Table 1) are added and the resulting sum is divided
by the order of the subgroup.

CI-CF(S[4]
σ̂I

) = 1

48

(

b4
1 + 3b2

2 + 8b1b3 + 6b2
1b2 + 6b4

+ 6a2
1c2 + 6c4 + a4

1 + 3c2
2 + 8a1a3

)

(45)

CI-CF(S[4]
10σ ) = 1

24

(

b4
1 + 3b2

2 + 8b1b3 + 6a2
1c2 + 6c4

)

(46)

CI-CF(S[4]
9σ̂I

) = 1

16

(

b4
1 + 3b2

2 + 2b2
1b2 + 2b4 + 2a2

1c2 + 2c4 + a4
1 + 3c2

2

)

(47)

CI-CF(S[4]
6σ ) = 1

8

(

b4
1 + 3b2

2 + 2a2
1c2 + 2c4

)

(48)
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CI-CF(S[4]
6̂I

) = 1

8

(

b4
1 + 3b2

2 + a4
1 + 3c2

2

)

(49)

CI-CF(S[4]
5σ σ̂ ) = 1

8

(

b4
1 + b2

2 + 2b4 + 2a2
1c2 + 2c2

2

)

(50)

CI-CF(S[4]
2σ̂ ) = 1

4

(

b4
1 + b2

2 + 2c2
2

)

(51)

To enumerate derivatives (promolecules) by starting from the stereoskeletons of
ligancy 4 (Fig. 1), four substituents are selected from an inventory of proligands:

X = {A, B, X, Y; p, q, r, s; p, q, r, s}, (52)

where the letters A, B, X, and Y represent achiral proligands and the pairs of p/p, q/q,
r/r, and s/s represent pairs of enantiomeric proligands in isolation (when detached).
According to Theorem 1 of [16], we use the following ligand-inventory functions:

ad = Ad + Bd + Xd + Yd (53)

cd = Ad + Bd + Xd + Yd

+2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 + 2sd/2sd/2 (54)

bd = Ad + Bd + Xd + Yd

+pd + qd + rd + sd + pd + qd + rd + sd . (55)

These ligand-inventory functions are introduced into an CI-CF (Eqs. 45–51) to give
a generating function, in which the coefficient of the term AaBbXx Yyppppqqqq rr qr ss

qs indicates the number of promolecules to be counted. Because the proligands A, B,
etc. appear symmetrically, the term can be represented by the following partition:

[θ] = [a, b, x, y; p, p, q, q, r, r , s, s], (56)

where we put a ≥ b ≥ x ≥ y, p ≥ p, q ≥ q , r ≥ r , s ≥ s, and p ≥ q ≥ r ≥ s without
losing generality. For example, the partition [θ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0]
corresponds to the terms A4, B4, and so on.

Under the action of a point group onto each stereoskeleton (Fig. 1), a pair of
(self-)enantiomers is counted once, where a self-enantiomeric relationship gener-
ates an achiral promolecule. Hence, each coefficient of the term corresponding to
the partition [θ]i represents the number of inequivalent pairs under the action of the
point group, as collected in the PG-column of each table. Under an RS-stereoisomeric
group, a quadruplet of promolecules (contained in a stereoisogram) is counted once.
Hence, each coefficient for [θ]i represents the number of inequivalent quadruplets (or
stereoisograms) under the action of the RS-stereoisomeric group, as collected in the
RS-SIG-column of each table. Under a stereoisomeric group, a set of stereoisomers is
counted once. Hence, each coefficient for [θ]i represents the number of inequivalent
sets under the action of the stereoisomeric group, as collected in the SIG-column of
each table. Under an isoskeletal group, a set of isoskeletomers is counted once. Hence,
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each coefficient for [θ]i represents the number of inequivalent sets under the action of
the isoskeletal group, as collected in the ISG-column of each table.

3 Enumeration results and discussions

3.1 Tetrahedral Skeleton

Because the tetrahedral skeleton 1 has the group hierarchy shown by Eq. 39, the CI-CF
for S[4]

10σ (Eq. 46) is used to calculate the numbers of pairs of enantiomers under the
point group Td . After the introduction of the ligand-inventory functions (Eqs. 53–
55) into the CI-CF (Eq. 46), the resulting equation is expanded to give a generating
function. The coefficient of each term in the generating function shows the number
of pairs of (self-)enantiomers to be counted. The results are collected in the PG-
column of Table 2. On the other hand, the CI-CF for S[4]

σ̂I
(Eq. 45) is used to calculate

the numbers of quadruplets of RS-stereoisomers under the RS-stereoisomeric group
Tdσ̃̂I . The results are collected in the RS-SIG-column of Table 2. The SIG-column (for
the stereoisomeric group) or the ISG-column (for the isoskeletal group) of Table 2 has
equal values to those of the RS-SIG-column according to the group hierarchy (Eq. 39).

To survey the results of Table 2, it is convenient to focus our attention to the RS-SIG-
column, because the corresponding stereoisograms are capable of linking geometric
features (the PG-column) and stereoisomeric features (the SIG- and ISG-columns)
in stereochemistry. Note that the tetrahedral cases exhibit special features that the
RS-SIG-column has the same values as those of the SIG- and ISG-columns.

Let us first examine the [θ]11-row which corresponds to the composition ABXp
(or ABXp). Because a pair of enantiomers (ABXp and ABXp) is counted once under
the point group, the value 1 at the intersection between [θ]11-row and the PG-column
corresponds to 2 × 1

2 (ABXp + ABXp), which shows the presence of two pairs of
enantiomers. They are depicted in the form of a stereoisogram of type III, as found
in Fig. 2. The vertical directions of Fig. 2 indicate geometric features, so that there
appear a pair of enantiomers 7/7 and another pair of enantiomers 8/8.

The value 1/2 appearing at the intersection between between [θ]11-row and the RS-
SIG-column corresponds to 1× 1

2 (ABXp+ABXp), which shows the presence of one
quadruplet of RS-stereoisomers 7/7/8/8, which appears in the type-III stereoisogram
shown in Fig. 2.

These features of enumeration are common to type-III stereoisograms, as shown
by the designation of (III) in the the RS-SIG-column.

In summary, the hierarchy for the tetrahedral skeleton 1 (Eq. 39) results in the
following classification for characterizing the [θ]11-row of Table 2:

{〈([

7 7
] [

8 8
])〉}

, (57)

where a pair of square brackets represents a pair of enantiomers (or an achiral pro-
molecule), a pair of parentheses represents a quadruplet of RS-stereoisomers, a pair
of angle brackets represents a set of stereoisomers, and a pair of braces represents a
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Table 2 Numbers of isomers derived from a tetrahedral skeleton

Partition PG RS-SIG SIG ISG

S[4]
10σ S[4]

σ̂I
S[4]
σ̂I

S[4]
σ̂I

(Td ) (Tdσ̃̂I )

[θ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 (IV) 1 1

[θ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 (IV) 1 1

[θ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 (IV) 1 1

[θ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 (IV) 1 1

[θ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 1 1 (IV) 1 1

[θ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 (I) 1 1

[θ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1 1/2 (III) 1/2 1/2

[θ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 2 1 (V) 1 1

[θ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 1 1/2 (III) 1/2 1/2

[θ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] 1 1/2 (III) 1/2 1/2

[θ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] 1 1/2 (III) 1/2 1/2

[θ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] 1 1 (IV) 1 1

[θ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] 1/2 1/2 (II) 1/2 1/2

[θ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] 1 1 (I) 1 1

[θ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] 1 1/2 (III) 1/2 1/2

[θ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] 1 1/2 (III) 1/2 1/2

set of isoskeletomers. Note that each quadruplet of RS-stereoisomers composes such
a stereoisogram as Fig. 2.

As the 2nd example, let us examine the [θ]12-row, which corresponds to the com-
position ABp2 (or ABp2). The value 1/2 at the intersection between [θ]12-row and the
PG-column corresponds to 1 × 1

2 (ABp2 + ABp2), which shows the presence of one
pair of enantiomers. This pair is depicted in the form of a stereoisogram of type II, as
found in Fig. 3. The type-II stereoisogram (Fig. 3) contains one pair of enantiomers
9/9.

123



J Math Chem (2015) 53:1010–1053 1023

Fig. 2 Isomers with the
composition ABXp or ABXp
([θ]11) on the basis of a
tetrahedral skeleton. This
diagram is a stereoisogram of
type III, which contains two
pairs of enantiomers
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Fig. 3 Isomers with the
composition ABp2 or ABp2

([θ]12) on the basis of a
tetrahedral skeleton. This
diagram is a stereoisogram of
type II, which contains one pair
of enantiomers
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(1)(2 4)(3) (1)(2)(3)(4)

On the other hand, the value 1/2 at the intersection between [θ]12-row and the RS-
SIG-column corresponds to 1 × 1

2 (ABp2 + ABp2), which shows the presence of one
quadruplet of RS-stereoisomers, as found in Fig. 3. Because of type II, the quadruplet
of the stereoisogram (Fig. 3) degenerates into one pair of enantiomers 9/9

These features of enumeration exemplified by the [θ]12-row are common to type-II
stereoisograms, as shown by each row designated by the symbol (II) at the intersection
concerning the the RS-SIG-column.

In summary, the hierarchy for the tetrahedral skeleton 1 (Eq. 39) results in the
following classification for characterizing the [θ]12-row of Table 2:
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Fig. 4 Isomers with the
composition ABpp ([θ]13) on the
basis of a tetrahedral skeleton.
This diagram is a stereoisogram
of type V, which contains two
achiral promolecules
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{〈([

9 9
])〉}

, (58)

where the quadruplet of RS-stereoisomers in a pair of parentheses composes such a
stereoisogram as Fig. 3.

As the 3rd example, let us examine the [θ]13-row, which corresponds to the com-
position ABpp. The value 2 at the intersection between [θ]13-row and the PG-column
shows the presence of two achiral promolecules. They are depicted in the form of a
type-V stereoisogram shown in Fig. 4, which contains RS-diastereomeric promole-
cules 10 and 11.

On the other hand, the value 1 at the intersection between [θ]12-row and the RS-SIG-
column shows the presence of one quadruplet of RS-stereoisomers (Fig. 4). Thus, a set
of RS-diastereomeric promolecules 10/11 is regarded as one quadruplet to be counted
once.

In summary, the hierarchy for the tetrahedral skeleton 1 (Eq. 39) results in the
following classification for characterizing the [θ]13-row of Table 2:

{〈([10] [11])〉} , (59)

where a pair of square brackets represents an achiral promolecule as one-membered
equivalence class under the point group. A quadruplet of RS-stereoisomers composes
such a stereoisogram as Fig. 4.

3.2 Allene skeleton

Because the allene skeleton 2 has the group hierarchy shown by Eq. 40, the CI-CF
for S[4]

6σ (Eq. 48) is used to calculate the numbers of pairs of (self-)enantiomers under
the point group D2d . The coefficient of each term in the corresponding generating
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Table 3 Numbers of isomers derived from an allene skeleton

Partition PG RS-SIG SIG ISG

S[4]
6σ S[4]

9σ̂I
S[4]

9σ̂I
S[4]
σ̂I

(D2d ) (D2dσ̃̂I )

[θ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 2 2 2 1

[θ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] 2 2 2 1

[θ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 2 2 2 1

[θ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] 3 3 3 1

[θ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] 3 3/2 3/2 1/2

[θ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 4 2 2 1

[θ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 3 3/2 3/2 1/2

[θ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] 3 3/2 3/2 1/2

[θ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] 3 3/2 3/2 1/2

[θ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] 2 2 2 1

[θ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] 3/2 1 1 1/2

[θ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] 3/2 1 1 1/2

[θ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] 3 3 3 1

[θ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] 3 3/2 3/2 1/2

[θ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] 3 3/2 3/2 1/2

function gives the number of pairs of (self-)enantiomers to be counted, as collected in
the PG-column of Table 3. On the other hand, the CI-CF for S[4]

9σ̂I
(Eq. 47) is used to

calculate the numbers of quadruplets of RS-stereoisomers under the RS-stereoisomeric
group D2dσ̃̂I . The results are collected in the RS-SIG-column of Table 3. The SIG-
column (for the stereoisomeric group) has equal values to those of the RS-SIG-column
according to the group hierarchy (Eq. 40). The ISG-column (for the isoskeletal group)
of Table 3 is obtained by using the CI-CF for S[4]

σ̂I
(Eq. 45).
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S

C

3

2
1

4

B

p

A

p

3

4
1

2

B

p

A

p

12 12 (= 12)
(1)(2)(3)(4) (1)(2 4)(3)

3

4
1

2

B

p

A

p

3

2
1

4

B

p

A

p

12 12 (= 12)
(1)(2 4)(3) (1)(2)(3)(4)

S

C

3

2
1

4

p

B

A

p

3

4
1

2

p

p

A

B

13 14
(1)(2)(3)(4) (1)(2 4)(3)

3

4
1

2

p

p

A

B
3

2
1

4

p

B

A

p

13 14
(1)(2 4)(3) (1)(2)(3)(4)

(a) type-II stereoisogram (b) type-III stereoisogram

Fig. 5 Stereoisograms for the composition ABp2 (or ABp2) on the basis of the allene skeleton. a A type-
II stereoisogram containing one pair of enantiomers. b A type-III stereoisogram containing two pairs of
enantiomers

The enumeration results collected in the PG-column of Table 3 is equivalent to
those reported previously [16], which are based on the proligand method (cf. Eq. 14 of
[16]). The enumeration results collected in the RS-SIG-column of Table 3 is equivalent
to those reported previously [46,47], which are based on the USCI method (cf. Eqs.
126 and 127 of [16]). Manual enumeration of stereoisograms for allene derivatives
have been reported [34,48]. To comprehend the total features of stereoisomerism, two
cases are examined from the present viewpoint as follows.

The first case is the [θ]12-row of Table 3, which corresponds to the composition
ABp2 (or ABp2). The value 3/2 at the intersection between [θ]12-row and the PG-
column in Table 3 corresponds to three pairs of enantiomers because of 3× 1

2 (ABp2 +
ABp2). They are contained in the two stereoisograms shown in Fig. 5, where each
promolecule is depicted in the form of a top projection along the C=C=C axis of the
allene skeleton 2. The type-II stereoisogram (Fig. 5a) contains one pair of enantiomers,
i.e., 12/12; and the type-III stereoisogram (Fig. 5b) contains two pairs of enantiomers,
i.e., 13/13 and 14/14. Totally, there appear three pairs of enantiomers.

On the other hand, the value 1 at the intersection between [θ]12-row and the RS-SIG-
column in Table 3 indicates the appearance of two quadruplets of RS-stereoisomers
because of 2× 1

2 (ABp2+ABp2). The two quadruplets corresponds to the two stereoiso-
grams shown in Fig. 5, so that the one quadruplet consists of RS-stereoisomers 12/12
(degenerate) and the other quadruplet consists of RS-stereoisomers 13/13/14/14. This
result of combinatorial enumeration is consistent with the stereoisogram set denoted
by (II/III2), which has been obtained by manual enumeration (Fig. 8 of [34]).

The hierarchy for the allene skeleton 2 (Eq. 40) indicates that the SIG-column is
identical with the RS-SIG-column, as confirmed by Table 3. It follows that the value 1
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at the intersection between the [θ]12-row and the SIG-column in Table 3 indicates the
appearance of two inequivalent sets of stereoisomers because of 2× 1

2 (ABp2 +ABp2).
In other words, each quadruplet of RS-stereoisomers in each stereoisogram coincides
with each set of stereoisomers in the case of allene derivatives, as confirmed by Fig. 5.

Finally, the two inequivalent sets of stereoisomers (the value 1 at the SIG-column)
are totally regarded as one set of isoskeletomers (the value 1/2 at the ISG-column).
This result is also confirmed by Fig. 5.

In summary, the hierarchy for the allene skeleton 2 (Eq. 40) results in the following
classification for characterizing the [θ]12-row of Table 3:

{〈([

12 12
])〉 〈([

13 13
] [

14 14
])〉}

, (60)

where each pair of parentheses corresponds to each of the stereoisograms shown in
Fig. 5.

As the 2nd case, let us examine the [θ]13-row of Table 3, which corresponds to
the composition ABpp. The value 4 at the intersection between [θ]13-row and the PG-
column shows the presence of four pairs of enantiomers or achiral promolecules. They
are depicted in Fig. 6a, b in the form of two stereoisograms of type V and of type III.
The type-V stereoisogram (Fig. 6a) consists of two achiral promolecules 15/16, which
are RS-diastereomeric to each other. The type-III stereoisogram (Fig. 6b) consists of
two pairs of enantiomers, i.e., 17/17 and 18/18. Totally, there appear four pairs of
(self-)enantiomeric promolecules.

On the other hand, the value 2 at the intersection between [θ]13-row and the RS-
SIG-column shows the presence of two quadruplets of RS-stereoisomers (Fig. 6). This
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Fig. 6 Stereoisograms for the composition ABpp on the basis of the allene skeleton. a A type-V stereoiso-
gram containing two achiral promolecules. b A type-III stereoisogram containing two pairs of enantiomers
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result of combinatorial enumeration is consistent with the stereoisogram set denoted
by (V/III2), which has been obtained by manual enumeration (Fig. 10 of [34]).

According to the hierarchy for the allene skeleton 2 (Eq. 40), the SIG-column
of Table 3 is identical with the RS-SIG-column. Hence, each quadruplet of RS-
stereoisomers (i.e., each stereoisogram) coincides with each set of stereoisomers in
the case of allene derivatives, as confirmed by Fig. 6.

Finally, the two inequivalent sets of stereoisomers (the value 2 at the SIG-column)
are totally regarded as one set of isoskeletomers (the value 1 at the ISG-column). This
result is also confirmed by Fig. 6.

In summary, the hierarchy for the allene skeleton 2 (Eq. 40) results in the following
classification for characterizing the [θ]13-row of Table 3:

{〈([15] [16])〉 〈([

17 17
] [

18 18
])〉}

, (61)

where each pair of parentheses corresponds to each of the stereoisograms shown in
Fig. 6.

3.3 Ethylene skeleton

The ethylene skeleton 3 has the group hierarchy shown by Eq. 41, so that the CI-CF
for S[4]

6̂I
(Eq. 49) is used to calculate the numbers of pairs of enantiomers under the

point group D2h . The coefficient of each term in the obtained generating function
shows the number of pairs of (self-)enantiomers to be counted, as collected in the PG-
column of Table 4. The group hierarchy (Eq. 41) shows that the RS-stereoisomeric
group D2̂I (∼= S[4]

6̂I
) is isomorphic to the point group D2h (∼= S[4]

6̂I
). Hence, the numbers

of quadruplets of RS-stereoisomers under the RS-stereoisomeric group are equal to
those of pair of (self-)enantiomers, as collected in the RS-SIG-column of Table 4. The
SIG-column (for the stereoisomeric group) has been obtained by using the CI-CF for
S[4]

9σ̂I
(Eq. 47) according to the group hierarchy (Eq. 41). The ISG-column (for the

isoskeletal group) of Table 4 is obtained by using the CI-CF for S[4]
σ̂I

(Eq. 45).
Let us examine the [θ]12-row of Table 4, which corresponds to the composition

ABp2 (or ABp2). The value 3/2 at the intersection between [θ]12-row and the PG-
column in Table 4 shows the presence of three pairs of enantiomers. They are contained
in the three type-II stereoisograms shown in Fig. 7, i.e., 19/19, 20/20, and 21/21. The
values in RS-SIG-column in Table 4 are identical with the PG-column according to the
hierarchy for the ethylene skeleton 3 (Eq. 41). Thus, there appear three quadruplets of
RS-stereoisomers in accord with the three stereoisograms shown in Fig. 7.

It should be noted that the stereoisograms shown in Fig. 7 are drawn by presuming
the following coset decomposition:

D2̂I = C2 + σC2 + σ̃C2 + ̂I C2, (62)

which is derived from D2 = C2 + σ̃C2.
The value 1 at the intersection between the [θ]12-row and the SIG-column in

Table 4 indicates the appearance of two inequivalent sets of stereoisomers because
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Table 4 Numbers of isomers derived from an ethylene skeleton

Partition PG RS-SIG SIG ISG

S[4]
6̂I

S[4]
6̂I

S[4]
9σ̂I

S[4]
σ̂I

(D2h ) (D2̂I )

[θ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 3 3 2 1

[θ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] 3 3 2 1

[θ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 3 3 2 1

[θ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] 6 6 3 1

[θ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] 3 3 3/2 1/2

[θ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 3 3 2 1

[θ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 3 3 3/2 1/2

[θ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] 3 3 3/2 1/2

[θ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] 3 3 3/2 1/2

[θ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] 3 3 2 1

[θ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] 3/2 3/2 1 1/2

[θ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] 3/2 3/2 1 1/2

[θ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] 6 6 3 1

[θ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] 3 3 3/2 1/2

[θ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] 3 3 3/2 1/2

of 2× 1
2 (ABp2 +ABp2). The cis/trans-isomerization of 19 (a Z-isomer) generates the

corresponding E-isomer 20, so that the stereoisogram shown by Fig. 7a is equivalent
to the other stereoisogram shown by Fig. 7b under the action of the stereoisomeric
group. Thereby, the quadruplets of the two stereoisograms coalesce into a single set of
stereoisomers to be counted once for the SIG-column in Table 4. On the other hand,
the cis/trans-isomerization converts 21 into itself, so that the quadruplet of Fig. 7c
itself generates a single set of stereoisomers to be counted once for the SIG-column in
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Fig. 7 Stereoisograms for the composition ABp2 (or ABp2) on the basis of the ethylene skeleton. a A
type-II stereoisogram containing a pair of enantiomers (Z-isomers). b A type-II stereoisogram containing
a pair of enantiomers (E-isomers). c A type-II stereoisogram containing a pair of enantiomers

Table 4. Totally, there appear two inequivalent sets of stereoisomers, as found at the
intersection between the [θ]12-row and the SIG-column in Table 4.

Finally, the two inequivalent sets of stereoisomers (the value 1 at the SIG-column)
are totally regarded as one set of isoskeletomers (the value 1/2 at the ISG-column).
This result is also confirmed by Fig. 7, where the three stereoisograms coalesce to give
a single set of isoskeletomers. This result of combinatorial enumeration is consistent
with the extended stereoisogram set denoted by (II-II)2/II2), which has been obtained
by manual enumeration (e.g., Fig. 10 of [35]).
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In summary, the hierarchy for the ethylene skeleton 3 (Eq. 41) results in the fol-
lowing classification for characterizing the [θ]12-row of Table 4:

{〈([

19 19
]) ([

20 20
])〉 〈([

21 21
])〉}

, (63)

where each pair of parentheses corresponds to each of the stereoisograms shown in
Fig. 7.

Let us next examine the [θ]13-row of Table 4, which corresponds to the composition
ABpp. The value 3 at the intersection between [θ]13-row and the PG-column in Table 4
indicates the presence of three pairs of enantiomers, i.e., 22/22, 23/23, and 24/24,
which are respectively involved in the three type-II stereoisograms shown in Fig. 8.
According to the hierarchy for the ethylene skeleton 3 (Eq. 41), the values in RS-SIG-
column in Table 4 are identical with the PG-column. Hence, the presence of three
quadruplets of RS-stereoisomers is concluded in accord with the three stereoisograms
shown in Fig. 8.

The value 2 at the intersection between the [θ]13-row and the SIG-column in Table 4
indicates the appearance of two inequivalent sets of stereoisomers. The cis/trans-
isomerization of 22 (a Z-isomer) generates the corresponding E-isomer 23. Hence,
the stereoisogram shown by Fig. 8a is equivalent to the other stereoisogram shown by
Fig. 8b under the action of the stereoisomeric group. This means that the quadruplets
of the two stereoisograms coalesce into a single set of stereoisomers to be counted once
for the SIG-column in Table 4. On the other hand, the cis/trans-isomerization converts
24 into its enantiomer 24, so that the quadruplet of Fig. 7c itself generates a single
set of stereoisomers to be counted once for the SIG-column in Table 4. Totally, there
appear two inequivalent sets of stereoisomers, as found at the intersection between the
[θ]13-row and the SIG-column in Table 4.

Finally, the two inequivalent sets of stereoisomers (the value 2 at the SIG-column)
are totally regarded as one set of isoskeletomers (the value 1 at the ISG-column). This
result is also confirmed by Fig. 8, where the three stereoisograms coalesce to give a sin-
gle set of isoskeletomers. This result of combinatorial enumeration is consistent with
the extended stereoisogram set denoted by (II-II)2/(II=II), which has been obtained
by manual enumeration (e.g., Fig. 14 of [35]).

In summary, the hierarchy for the ethylene skeleton 3 (Eq. 41) results in the fol-
lowing classification for characterizing the [θ]13-row of Table 4:

{〈([

22 22
]) ([

23 23
])〉 〈([

24 24
])〉}

, (64)

where each pair of parentheses corresponds to each of the stereoisograms shown in
Fig. 8.

It should be noted that the enantiomeric relationship between 24 and 24 is a Z/E-
isomeric relationship (a kind of ‘diastereomeric’ relationship) at the same time. This
type of degeneration is well-known under the name of ‘geometric enantiomers’ (cf.
page 85 of [49] and page 8 of [50]). Strictly speaking, the degeneration is not explicitly
represented by Eq. 64. The last part of Eq. 64 should be modified as follows:
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Fig. 8 Stereoisograms for the composition ABpp on the basis of the ethylene skeleton. a A type-II stereoiso-
gram containing a pair of enantiomers (Z-isomers). b A type-II stereoisogram containing a pair of enan-
tiomers (E-isomers). c A type-II stereoisogram containing a pair of enantiomers (E/Z-isomers)

〈([

24

24

]) ([

24

24

])〉

, (65)

where the two pairs of parentheses represent the Z/E-isomeric relationship between
24 and 24, while each pair of square brackets represents the enantiomeric relationship
between 24 and 24. See Fig. 14 of [35].
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3.4 Oxirane skeleton

The oxirane skeleton 4 has the group hierarchy shown by Eq. 42, so that the CI-CF for
S[4]

2σ̂ (Eq. 51) is used to calculate the numbers of pairs of (self-)enantiomers under the
point group C2v . The calculated values are collected in the PG-column of Table 5. The
RS-SIG-column of Table 5 has been calculated by using the CI-CF for S[4]

6̂I
(Eq. 49),

because the RS-stereoisomeric group C2vσ̃̂I for he oxirane skeleton 4 is isomorphic
to S[4]

6̂I
. The SIG-column of Table 5 (for the stereoisomeric group) has been obtained

Table 5 Numbers of isomers derived from an oxirane skeleton

Partition PG RS-SIG SIG ISG

S[4]
2σ̂ S[4]

6̂I
S[4]

9σ̂I
S[4]
σ̂I

(C2v) (C2vσ̃̂I )

[θ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1 1/2 1/2 1/2

[θ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 3 3 2 1

[θ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 2 3/2 1 1/2

[θ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] 3 3 2 1

[θ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 3 3/2 1 1/2

[θ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 5 3 2 1

[θ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 3 3/2 1 1/2

[θ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] 6 6 3 1

[θ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] 6 3 3/2 1/2

[θ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 3 3/2 1 1/2

[θ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 6 3 2 1

[θ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 6 3 3/2 1/2

[θ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] 1 1/2 1/2 1/2

[θ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] 3 3/2 1 1/2

[θ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] 3 3/2 1 1/2

[θ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] 6 3 3/2 1/2

[θ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] 6 3 3/2 1/2

[θ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] 1 1/2 1/2 1/2

[θ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] 1 1/2 1/2 1/2

[θ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] 4 3 2 1

[θ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] 3 3/2 1 1/2

[θ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] 2 3/2 1 1/2

[θ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] 3 3/2 1 1/2

[θ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] 3 3/2 1 1/2

[θ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] 10 6 3 1

[θ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] 6 3 3/2 1/2

[θ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] 6 3 3/2 1/2
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Fig. 9 Stereoisograms for the composition ABp2 (or ABp2) on the basis of the oxirane skeleton. a A type-
III stereoisogram containing two pairs of enantiomers (Z-isomers). b A type-III stereoisogram containing
two pairs of enantiomers (E-isomers). c A type-III stereoisogram containing two pairs of enantiomers

by using the CI-CF for S[4]
9σ̂I

(Eq. 47) according to the group hierarchy (Eq. 42). The
ISG-column of Table 5 (for the isoskeletal group) has been obtained by using the
CI-CF for S[4]

σ̂I
(Eq. 45).

The value 3 at the intersection between [θ]12-row and the PG-column in Table 5
corresponds to 6 × 1

2 (ABp2 + ABp2), which indicates the appearance of six pairs of
enantiomers. They are contained in the three type-III stereoisograms shown in Fig. 9.
Thus, two pairs of enantiomers, 25/25 and 26/26, appear in the type-III stereoisogram
shown in Fig. 9a; two pairs, 27/27 and 28/28, appear in the type-III stereoisogram
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shown in Fig. 9b; and two pairs, 29/29 and 30/30, appear in the type-III stereoisogram
shown in Fig. 9c.

The value 3/2 at the intersection between [θ]12-row and the RS-SIG-column in
Table 5 corresponds to 3× 1

2 (ABp2 +ABp2), which indicates the appearance of three
quadruplets of RS-stereoisomers, as confirmed by the three stereoisograms shown in
Fig. 9.

In order to examine the the SIG-column, the cis/trans-isomerization of 25 (a
Z-isomer) is confirmed to generate the corresponding E-isomer 27. Hence, the
stereoisogram shown by Fig. 9a is equivalent to the other stereoisogram shown by
Fig. 9b under the action of the stereoisomeric group. Thereby, the quadruplets of the
two stereoisograms coalesce into a single set of stereoisomers to be counted once for
the SIG-column in Table 5.

On the other hand, the cis/trans-isomerization converts 29 into itself, so that the
quadruplet of Fig. 9c itself generates a single set of stereoisomers to be counted
once for the SIG-column in Table 5. Totally, there appear two inequivalent sets of
stereoisomers, as found at the intersection between the [θ]12-row and the SIG-column
in Table 5, where the value 1 corresponds to 2 × 1

2 (ABp2 + ABp2).
Finally, the two inequivalent sets of stereoisomers (the value 1 at the SIG-column)

are totally regarded as one set of isoskeletomers (the value 1/2 at the ISG-column).
This result is also confirmed by Fig. 9, where the three stereoisograms coalesce to give
a single set of isoskeletomers.

In summary, the hierarchy for the oxirane skeleton 4 (Eq. 42) results in the following
classification for characterizing the [θ]12-row of Table 5:

{〈([

25
25

] [

26
26

]) ([

27
27

] [

28
28

])〉 〈([

29
29

] [

30
30

])〉}

, (66)

where each pair of parentheses corresponds to each of the stereoisograms shown in
Fig. 9. Remember that the number of pairs of square brackets indicates the number
of inequivalent pairs of enantiomers, the number of pairs of parentheses indicates the
number of inequivalent quadruplets of RS-stereoisomers, the number of pairs of angle
brackets indicates the number of inequivalent sets of stereoisomers, and finally the
number of pairs of braces indicates the number of inequivalent sets of isoskeletomers.
The cases of the oxirane skeleton 4 exhibit non-degenerate features as exemplified by
Eq. 66, where these numbers are at most different from one another in accord with the
group hierarchy shown by Eq. 42.

The [θ]13-row of Table 5 corresponds to the composition ABpp. The value 6 at the
intersection between [θ]13-row and the PG-column in Table 5 indicates the presence
of six pairs of enantiomers, as depicted in Fig. 10. The first type-III stereoisogram
(Fig. 10a) consists of 31/31 and 32/32; the 2nd type-III stereoisogram (Fig. 10b)
consists of 33/33 and 34/34; and the 3rd type-III stereoisogram (Fig. 10c) consists of
35/35 and 36/36.

The value 3 at the intersection between [θ]13-row and the RS-SIG-column in Table 5
indicates that there appear three quadruples of RS-stereoisomers, which construct the
three stereoisograms shown in depicted in Fig. 10.
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(c) type-III stereoisogram (Z/E-isomers)

Fig. 10 Stereoisograms for the composition ABpp on the basis of the oxirane skeleton. a A type-III
stereoisogram containing two pairs of enantiomers (Z-isomers). b A type-III stereoisogram containing
two pairs of enantiomers (E-isomers). c A type-III stereoisogram containing two pairs of enantiomers
(Z/E-isomers)

Because the cis/trans-isomerization of 31 (a Z-isomer) generates the corresponding
E-isomer 33, the stereoisogram shown by Fig. 10a is equivalent to the other stereoiso-
gram shown by Fig. 10b under the action of the stereoisomeric group. Thereby, the
quadruplets of the two stereoisograms coalesce into a single set of stereoisomers to
be counted once for the SIG-column in Table 5. On the other hand, the cis/trans-
isomerization converts 35 (a Z-isomer) into its enantiomer 35 (an E-isomer), so that
the quadruplet of Fig. 10c itself generates a single set of stereoisomers to be counted
once for the SIG-column in Table 5. Totally, there appear two inequivalent sets of
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stereoisomers in accord with the value 2 found at the intersection between the [θ]13-
row and the SIG-column in Table 5.

Finally, the two inequivalent sets of stereoisomers (the value 2 at the SIG-column)
are totally regarded as one set of isoskeletomers (the value 1 at the ISG-column). This
result is also confirmed by Fig. 10, where the three stereoisograms coalesce to give a
single set of isoskeletomers.

In summary, the hierarchy for the oxirane skeleton 4 (Eq. 42) results in the following
classification for characterizing the [θ]13-row of Table 5:

{〈([

31
31

] [

32
32

]) ([

33
33

] [

34
34

])〉 〈([

35
35

] [

36
36

])〉}

, (67)

where each pair of parentheses corresponds to each of the stereoisograms shown in
Fig. 10.

It should be noted that the enantiomeric relationship between 35 and 35 or between
36 and 36 coalesce with a Z/E-isomeric relationship. See the interpretation described
for Eq. 64.

3.5 Square planar skeleton

Because the square planar skeleton 5 has the group hierarchy shown by Eq. 43, the
CI-CF for S[4]

9σ̂I
(Eq. 47) is used to calculate the numbers of pairs of enantiomers under

the point group D4h . The calculated values are collected in the PG-column of Table 6.
The RS-SIG-column of Table 6 is identical with the PG-column because of the group
hierarchy shown by Eq. 43, where S[4]

9σ̂I
is isomorphic to the RS-stereoisomeric group

D4̂I for the square planar skeleton. The SIG-column of Table 6 (for the stereoisomeric
group) has been obtained by using the CI-CF for S[4]

σ̂I
(Eq. 45) according to the group

hierarchy (Eq. 43). The ISG-column of Table 6 (for the isoskeletal group) is identical
with the SIG-column.

The [θ]13-row of Table 6 corresponds to the composition ABpp. The value 2 at the
intersection between [θ]13-row and the PG-column in Table 6 indicates the presence of
two pairs of (self-)enantiomers. It follows that there emerge one pair of enantiomers
37/37 and one achiral promolecule 38 (a pair of self-enantiomers), as depicted in
Fig. 11.

The value 2 at the intersection between [θ]13-row and the RS-SIG-column in Table 6
is equal to that of the PG-column in accord with the group hierarchy shown by Eq. 43.
The pair 37/37 corresponds to the stereoisogram shown in Fig. 11a, while the achiral
promolecule 38 corresponds to the stereoisogram shown in Fig. 11b. It follows that
the two stereoisograms mean the presence of two quadruplets of RS-stereoisomers.

It should be noted that the stereoisograms shown in Fig. 11 are drawn by presuming
the following coset decomposition:

D4̂I = C4 + σC4 + σ̃C4 + ̂I C4, (68)

which is derived from D4 = C4 + σ̃C4.
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Table 6 Numbers of isomers derived from a square planar skeleton

Partition PG RS-SIG SIG ISG

S[4]
9σ̂I

S[4]
9σ̂I

S[4]
σ̂I

S[4]
σ̂I

(D4h ) (D4̂I )

[θ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 2 2 1 1

[θ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] 2 2 1 1

[θ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 2 2 1 1

[θ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] 3 3 1 1

[θ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] 3/2 3/2 1/2 1/2

[θ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 2 2 1 1

[θ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 3/2 3/2 1/2 1/2

[θ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] 3/2 3/2 1/2 1/2

[θ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] 3/2 3/2 1/2 1/2

[θ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] 2 2 1 1

[θ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] 1 1 1/2 1/2

[θ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] 3 3 1 1

[θ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] 3/2 3/2 1/2 1/2

[θ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] 3/2 3/2 1/2 1/2

The value 1 at the intersection between [θ]13-row and the SIG-column in Table 6
means that two quadruplets of Fig. 11 coalesce into a set of stereoisomers, which is
counted once under the stereoisomeric group. The value of the ISG-column is identical
with that of the SIG-column in accord with the group hierarchy shown by Eq. 43. This
result of combinatorial enumeration is consistent with the extended stereoisogram
denoted by II=II-IV which has been obtained by manual enumeration (e.g., Fig. 9 of
[36]).
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Fig. 11 Stereoisograms for the composition ABpp on the basis of the square planar skeleton. a A type-II
stereoisogram containing one pair of enantiomers (SP-4-3, SP-4-4). b A type-IV stereoisogram containing
an achiral promolecule (SP-4-2)

In summary, the hierarchy for the square planar skeleton 5 (Eq. 43) results in the
following classification for characterizing the [θ]13-row of Table 6:

{〈([

37 37
])

([38])
〉}

, (69)

where a pair of square brackets represents a pair of enantiomers as two-membered
equivalence class or an achiral promolecule as one-membered equivalence class under
the point group.

It should be noted that the enantiomeric relationship between 37 and 37 coalesces
with a ‘diastereomeric’ relationship (SP-4-3 versus SP-4-4), as shown in Fig. 11a. See
the interpretation described for Eq. 64.

3.6 Square pyramidal skeleton

The square pyramidal skeleton 6 is characterized by the group hierarchy of Eq. 44.
Hence, the CI-CF for S[4]

5σ σ̂ (Eq. 50) is used to calculate the numbers of pairs of (self-
)enantiomers under the point group C4v . The calculated values are collected in the
PG-column of Table 7. The RS-SIG-column of Table 7 is calculated by using the CI-
CF for S[4]

9σ̂I
(Eq. 47), because S[4]

9σ̂I
is isomorphic to the RS-stereoisomeric group C4vσ̃̂I

for the square pyramidal skeleton. The SIG-column of Table 7 (for the stereoisomeric
group) has been obtained by using the CI-CF for S[4]

σ̂I
(Eq. 45) according to the group

hierarchy (Eq. 43). The ISG-column of Table 6 (for the isoskeletal group) is identical
with the SIG-column.

The [θ]13-row of Table 7 corresponds to the composition ABpp. The value 4 at
the intersection between the [θ]13-row and the PG-column in Table 7 indicates the
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Table 7 Numbers of isomers derived from a square pyramidal skeleton

Partition PG RS-SIG SIG ISG

S[4]
5σ σ̂

S[4]
9σ̂I

S[4]
σ̂I

S[4]
σ̂I

(C4v) (C4vσ̃̂I )

[θ]1 = [4, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]2 = [3, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 1 1 1 1

[θ]3 = [3, 0, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]4 = [2, 2, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0] 2 2 1 1

[θ]5 = [2, 0, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]6 = [2, 1, 1, 0; 0, 0, 0, 0, 0, 0, 0, 0] 2 2 1 1

[θ]7 = [2, 1, 0, 0; 1, 0, 0, 0, 0, 0, 0, 0] 3/2 1 1/2 1/2

[θ]8 = [2, 0, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 3 2 1 1

[θ]9 = [2, 0, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 3/2 1 1/2 1/2

[θ]10 = [1, 1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0] 3 3 1 1

[θ]11 = [1, 1, 1, 0; 1, 0, 0, 0, 0, 0, 0, 0] 3 3/2 1/2 1/2

[θ]12 = [1, 1, 0, 0; 2, 0, 0, 0, 0, 0, 0, 0] 3/2 1 1/2 1/2

[θ]13 = [1, 1, 0, 0; 1, 1, 0, 0, 0, 0, 0, 0] 4 2 1 1

[θ]14 = [1, 1, 0, 0; 1, 0, 1, 0, 0, 0, 0, 0] 3 3/2 1/2 1/2

[θ]15 = [1, 0, 0, 0; 3, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]16 = [1, 0, 0, 0; 2, 1, 0, 0, 0, 0, 0, 0] 3/2 1 1/2 1/2

[θ]17 = [1, 0, 0, 0; 2, 0, 1, 0, 0, 0, 0, 0] 3/2 1 1/2 1/2

[θ]18 = [1, 0, 0, 0; 1, 1, 1, 0, 0, 0, 0, 0] 3 3/2 1/2 1/2

[θ]19 = [1, 0, 0, 0; 1, 0, 1, 0, 1, 0, 0, 0] 3 3/2 1/2 1/2

[θ]20 = [0, 0, 0, 0; 4, 0, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]21 = [0, 0, 0, 0; 3, 1, 0, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]22 = [0, 0, 0, 0; 3, 0, 1, 0, 0, 0, 0, 0] 1/2 1/2 1/2 1/2

[θ]23 = [0, 0, 0, 0; 2, 2, 0, 0, 0, 0, 0, 0] 2 2 1 1

[θ]24 = [0, 0, 0, 0; 2, 1, 1, 0, 0, 0, 0, 0] 3/2 1 1/2 1/2

[θ]25 = [0, 0, 0, 0; 2, 0, 2, 0, 0, 0, 0, 0] 1 1 1/2 1/2

[θ]26 = [0, 0, 0, 0; 2, 0, 1, 1, 0, 0, 0, 0] 3/2 1 1/2 1/2

[θ]27 = [0, 0, 0, 0; 2, 0, 1, 0, 1, 0, 0, 0] 3/2 1 1/2 1/2

[θ]28 = [0, 0, 0, 0; 1, 1, 1, 1, 0, 0, 0, 0] 5 3 1 1

[θ]29 = [0, 0, 0, 0; 1, 1, 1, 0, 1, 0, 0, 0] 3 3/2 1/2 1/2

[θ]30 = [0, 0, 0, 0; 1, 0, 1, 0, 1, 0, 1, 0] 3 3/2 1/2 1/2

presence of four pairs of enantiomers, which are depicted in Fig. 12, i.e., 39/39, 40/40,
41/41, and 42/42.

The value 2 at the intersection between the [θ]13-row and the RS-SIG-column
in Table 7 indicates that there appear two quadruplets of RS-stereoisomers under
the action of the group S[4]

9σ̂I
, which is isomorphic to C4vσ̃̂I . Thus, the two pairs of

enantiomers, 39/39 and 40/40, construct a quadruplet to be counted once, which is
contained in a type III-stereoisogram (Fig. 12a). The other two pairs of enantiomers,
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(a) type-III stereoisogram (SPY-4-3, (b) type-III stereoisogram (SPY-4-2)
                         SPY-4-4)

Fig. 12 Stereoisograms for the composition ABpp on the basis of the square pyramidal skeleton. a A type-
III stereoisogram containing two pairs of enantiomers (SPY -4-3, SPY -4-4). b A type-III stereoisogram
containing two pairs of enantiomers (SPY -4-2)

41/41 and 42/42, construct a quadruplet to be counted once, which is contained in
another type III-stereoisogram (Fig. 12b).

The value 1 at the intersection between the [θ]13-row and the SIG-column in Table 7
means that two quadruplets of Fig. 12 coalesce into a set of stereoisomers, which is
counted once under the stereoisomeric group. The value of the ISG-column is identical
with that of the SIG-column in accord with the group hierarchy shown by Eq. 44.

In summary, the hierarchy for the square pyramidal skeleton 5 (Eq. 44) results in
the following classification for characterizing the [θ]13-row of Table 6:

{〈([

39 39
] [

40 40
]) ([

41 41
] [

42 42
])〉}

, (70)

where a pair of square brackets represents a pair of enantiomers as two-membered
equivalence class or an achiral promolecule as one-membered equivalence class under
the point group.

It should be noted that the enantiomeric relationship between 39 and 39 (C versus
A) or between 40 and 40 (A versus C) coalesces with a ‘diastereomeric’ relationship
between 39 and 39 (SPY -4-3 versus SPY -4-4) or between 40 and 40 (SPY -4-3 versus
SPY -4-4), as shown in Fig. 12a. See the interpretation described for Eq. 64.

4 Enumeration as graphs versus 3D structures

4.1 Modified Evaluation of Stereoisomers and Isoskeletomers

The enumerations in the preceding section adopt the compositions represented by the
partitions [θ]i (i = 1–30) in place of molecular formulas for counting isomers. It
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follows that, for example, ABp2 (counted by using 1
2 (ABp2 + ABp2) as a unit) and

ABpp are counted separately, although they correspond to the same molecular formula.
For the improved counting of inequivalent sets of stereoisomers (the SIG-column of
each table) as well as inequivalent sets of isoskeletomers (the ISG-column of each
table), the pair of proligands p/p, q/q, r/r, or s/s should be considered to degenerate
into a graph (2D structure), which is here denoted by the symbol p̈, q̈, r̈, or s̈.

To treat the stereoskeletons collected in Fig. 1 as graphs (2D structures), Eqs. 45 and
47 are converted to simplified cycle indices (CIs) without chirality fittingness, where
the sphericity indices ad , cd , and bd are replaced by a single dummy variable sd .

CI(S[4]
σ̂I

) = 1

48

(

s4
1 + 3s2

2 + 8s1s3 + 6s2
1 s2+6s4 + 6s2

1 s2 + 6s4 + s4
1 + 3s2

2 +8s1a3

)

= 1

24

(

s4
1 + 3s2

2 + 8s1s3 + 6s2
1 s2 + 6s4

)

(71)

CI(S[4]
9σ̂I

) = 1

16

(

s4
1 + 3s2

2 + 2s2
1 b2 + 2s4 + 2s2

1 s2 + 2s4 + s4
1 + 3s2

2

)

= 1

8

(

s4
1 + 3s2

2 + 2s2
1 b2 + 2s4

)

(72)

For the purpose of obtaining generating functions, Eqs. 53–55 are converted into a
single ligand-inventory function:

sd = Ad + Bd + Xd + Yd + p̈d + q̈d + r̈d + s̈d , (73)

where the symbol p̈, q̈, r̈, or s̈ appears with a coefficient 1 in accord with graph
enumeration.

The ligand-inventory function (Eq. 73) is introduced into an CI (Eq. 71 or Eq. 72)
to give a generating function, in which the coefficient of the term AaBbXx Yy p̈ p̈q̈q̈ r̈r̈ s̈s̈

indicates the number of promolecules to be counted. Because the proligands A, B, etc.
appear symmetrically, the term can be represented by the following partition:

[θ̈] = [a, b, x, y; p̈, q̈, r̈ , s̈], (74)

where we put a ≥ b ≥ x ≥ y and p̈ ≥ q̈ ≥ r̈ ≥ s̈ without losing generality. For
example, the partition [θ̈]1 = [4, 0, 0, 0; 0, 0, 0, 0] corresponds to the terms A4, B4,
and so on. The results are collected in the SIG′-column and the ISG′-column as found
below.

On the other hand, the counting under the action of a point group (the PG-column)
or an RS-stereoisomeric group (the RS-SIG-column) should be conducted by using
one of the CI-CFs (Eqs. 45–51). To assure the consistency with the above graph enu-
meration, the ligand-inventory functions (Eqs. 53–55) are converted into the following
equations:

ad = Ad + Bd + Xd + Yd (75)

cd = Ad + Bd + Xd + Yd + 2p̈d + 2q̈d + 2r̈d + 2s̈d (76)

bd = Ad + Bd + Xd + Yd + 2p̈d + 2q̈d + 2r̈d + 2s̈d , (77)
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where the symbol p̈, q̈, r̈, or s̈ appears with a coefficient 2 in accord with 3D structural
enumeration. The results are collected in the PG′-column and the RS-SIG′-column as
found below, where the partition represented by Eq. 74 is used.

4.2 Enumeration results and discussions

4.2.1 Tetrahedral skeleton

According to the group hierarchy shown by Eq. 39 for the tetrahedral skeleton 1,
the CI-CF for S[4]

10σ (Eq. 46) is used to calculate the numbers of pairs of enantiomers
under the point group Td , where the ligand-inventory functions Eqs. 75–77 are used in
place of Eqs. 53–55. The resulting values are collected in the PG′-column of Table 8.
On the other hand, the CI-CF for S[4]

σ̂I
(Eq. 45) and the ligand-inventory functions

represented by Eqs. 75–77 are used to calculate the numbers of quadruplets of RS-
stereoisomers under the RS-stereoisomeric group Tdσ̃̂I . The results are collected in
the RS-SIG′-column of Table 8.

The numbers of inequivalent sets of stereoisomers are calculated by using the CI
(Eq. 71) of the stereoisomeric group S[4]

σ̂I
and the ligand-inventory function represented

by Eq. 73. The results are collected in the SIG′-column of Table 8. The ISG′-column

Table 8 Numbers of isomers
derived from a tetrahedral
skeleton

Partition PG′ RS-SIG′ SIG′ ISG′
S[4]

10σ S[4]
σ̂I

S[4]
σ̂I

S[4]
σ̂I

(Td ) (Tdσ̃̂I )

[θ̈]1 = [4, 0, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]2 = [3, 1, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]3 = [3, 0, 0, 0; 1, 0, 0, 0] 1 1 1 1

[θ̈]4 = [2, 2, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]5 = [2, 0, 0, 0; 2, 0, 0, 0] 2 2 1 1

[θ̈]6 = [2, 1, 1, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]7 = [2, 1, 0, 0; 1, 0, 0, 0] 1 1 1 1

[θ̈]8 = [2, 0, 0, 0; 1, 1, 0, 0] 2 2 1 1

[θ̈]9 = [1, 1, 1, 1; 0, 0, 0, 0] 1 1 1 1

[θ̈]10 = [1, 1, 1, 0; 1, 0, 0, 0] 2 1 1 1

[θ̈]11 = [1, 1, 0, 0; 2, 0, 0, 0] 3 2 1 1

[θ̈]12 = [1, 1, 0, 0; 1, 1, 0, 0] 4 2 1 1

[θ̈]13 = [1, 0, 0, 0; 3, 0, 0, 0] 2 2 1 1

[θ̈]14 = [1, 0, 0, 0; 2, 1, 0, 0] 4 3 1 1

[θ̈]15 = [1, 0, 0, 0; 1, 1, 1, 0] 8 4 1 1

[θ̈]16 = [0, 0, 0, 0; 4, 0, 0, 0] 3 3 1 1

[θ̈]17 = [0, 0, 0, 0; 3, 1, 0, 0] 4 4 1 1

[θ̈]18 = [0, 0, 0, 0; 2, 2, 0, 0] 5 5 1 1

[θ̈]19 = [0, 0, 0, 0; 2, 1, 1, 0] 8 6 1 1

[θ̈]20 = [0, 0, 0, 0; 1, 1, 1, 1] 16 8 1 1
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Table 9 Correspondence
of the two partitions [θ̈]1 ↔ [θ]1

[θ̈]2 ↔ [θ]2
[θ̈]3 ↔ [θ]3
[θ̈]4 ↔ [θ]4
[θ̈]5 ↔ [θ]5, [θ]8
[θ̈]6 ↔ [θ]6
[θ̈]7 ↔ [θ]7
[θ̈]8 ↔ [θ]9 (2 times)

[θ̈]9 ↔ [θ]10

[θ̈]10 ↔ [θ]11

[θ̈]11 ↔ [θ]12, [θ]13

[θ̈]12 ↔ [θ]14 (2 times)

[θ̈]13 ↔ [θ]15, [θ]16

[θ̈]14 ↔ [θ]17 (2 times), [θ]18

[θ̈]15 ↔ [θ]19 (4 times)

[θ̈]16 ↔ [θ]20, [θ]21, [θ]23

[θ̈]17 ↔ [θ]22 (2 times), [θ]24 (2 times)

[θ̈]18 ↔ [θ]25 (2 times), [θ]26 (2 times), [θ]28

[θ̈]19 ↔ [θ]27 (4 times), [θ]29 (2 times)

[θ̈]20 ↔ [θ]30 (8 times)

(for the isoskeletal group) of Table 8 has equal values to those of the SIG′-column
according to the group hierarchy (Eq. 39).

The comparison between Table 2 based on the compositions [θ]i (i = 1–30) and
Table 8 based on the compositions [θ̈] j ( j = 1–20) provides us with useful pieces of
information on stereoisomerism. For the values in the PG′-column or in the RS-SIG′
(Table 8), the ligand inventory functions Eqs. 75–77 are used in place of Eqs. 53–55,
although the same CI-CF (S[4]

10σ or S[4]
σ̂I

) is used in comparison with the corresponding
values in Table 2. Hence, the values based on the partitions [θ̈] j ( j = 1–20) in Table 8
are related to the values based on the partitions [θ]i (i = 1–30) in Table 2, as collected
in Table 9. For example, the value 16 at the intersection between [θ̈]20-row and PG′-
column in Table 8 is correlated to the value 1 (corresponding to 2× 1

2 (pqrs+pqrs)) at
the intersection between [θ]30-row and the PG-column in Table 8), because the term
8 × 2 × 1

2 (pqrs + pqrs) corresponds to the term 8 × 2 × p̈q̈r̈s̈. Note that the partition
[θ]30 represents eight compositions (pqrs, pqrs, and so on), which are summed up to
give the partition [θ̈]20.

For the values in the SIG′-column or in the ISG′ (Table 8), the usage of the
CI (Eq. 71) and the ligand-inventory function (Eq. 73) means that they are based
on graphs (2D structures). For example, the value 1 at the intersection between the
[θ̈]20-row and the SIG′-column in Table 8 indicates that the number of inequivalent
sets of stereoisomers is calculated to be 1, which consists of 16 pairs of enantiomers,
as found at the intersection between [θ̈]20-row and PG′-column.

The [θ̈]10-row of Table 8 corresponds to the [θ]11-row of Table 2. As found in the
[θ̈]10-row of Table 9, the composition ABXp̈ for Table 8 corresponds to the composition
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1
2 (ABXp + ABXp) for Table 2. Hence, the classification represented by Eq. 57 holds
true in this modified enumeration.

The [θ̈]11-row of Table 8 corresponds to the [θ]12-row and the [θ]13-row of Table 2,
as found in the [θ̈]11-row of Table 9. The value 1/2 at the intersection between the
[θ]12-row and the SIG-column in Table 2 (1 × 1

2 (ABp2 + ABp2)) and the value 1 at
the intersection between the [θ]13-row and the SIG-column in Table 2 (1 × ABpp)
are combined to give the value 1 at the intersection between the [θ̈]11-row and the
SIG′-column in Table 8 (1 × ABp̈2).

Hence, the stereoisogram of Fig. 3 (for the composition 1
2 (ABp2 + ABp2)) and

the stereoisogram of Fig. 4 (for the composition ABpp) are combined, so as to con-
struct a set of stereoisomers (for the composition ABp̈2). As a result, Eqs. 58 and 59
are combined to give the following classification for characterizing the [θ̈]11-row of
Table 8:

{〈([

9
9

])

([10] [11])

〉}

. (78)

Hence, Eq. 78 is in accord with the values appearing in the [θ̈]11-row of Table 8, where
three pairs of square brackets indicate the number 3 of pairs of (self-)enantiomers (the
PG′-column), two pairs of parentheses indicate the number 2 of quadruplets of RS-
stereoisomers (the RS-SIG′-column), one pair of angle brackets indicates the number
1 of a set of stereoisomers (the SIG′-column), and one pair of braces indicates the
number 1 of a set of isoskeletomers (the ISG′-column).

4.2.2 Allene skeleton

Because the group hierarchy for the allene skeleton 2 is given by Eq. 40, the CI-CF
for S[4]

6σ (Eq. 48) is used to calculate the numbers of pairs of enantiomers under the
point group D2d , where the ligand-inventory functions Eqs. 75–77 are used in place
of Eqs. 53–55. The calculated values are collected in the PG′-column of Table 10.
On the other hand, the CI-CF for S[4]

9σ̂I
(Eq. 47) is used to calculate the numbers

of quadruplets of RS-stereoisomers under the RS-stereoisomeric group D2dσ̃̂I on the
basis of the ligand-inventory functions shown in Eqs. 75–77. The results are collected
in the RS-SIG′-column of Table 10.

The numbers of inequivalent sets of stereoisomers are calculated by using the CI
(Eq. 72) of the stereoisomeric group S[4]

9σ̂I
and the ligand-inventory function repre-

sented by Eq. 73. The results are collected in the SIG′-column of Table 10. Note that
the CI-CF (Eq. 47) for the RS-SIG′-column and the CI (Eq. 72) for the SIG′-column
are distinguished from each other, although these columns are based on the same group
S[4]

9σ̂I
. The ISG′-column (for the isoskeletal group) of Table 10 is obtained by using

the CI (Eq. 71) according to the group hierarchy (Eq. 40).
The [θ̈]11-row of Table 10 corresponds to the [θ]12-row and the [θ]13-row of Table 3,

as found in the [θ̈]11-row of Table 9.
The value 3/2 at the intersection between the [θ]12-row and the PG-column in Table 3

(3 × 1
2 (ABp2 + ABp2)) and the value 4 at the intersection between the [θ]13-row and

the PG-column in Table 3 (4 × ABpp) are combined to give the value 7 (seven pairs
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Table 10 Numbers of isomers
derived from an allene skeleton

Partition PG′ RS-SIG′ SIG′ ISG′
S[4]

6σ S[4]
9σ̂I

S[4]
9σ̂I

S[4]
σ̂I

(D2d ) (D2dσ̃̂I )

[θ̈]1 = [4, 0, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]2 = [3, 1, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]3 = [3, 0, 0, 0; 1, 0, 0, 0] 1 1 1 1

[θ̈]4 = [2, 2, 0, 0; 0, 0, 0, 0] 2 2 2 1

[θ̈]5 = [2, 0, 0, 0; 2, 0, 0, 0] 5 4 2 1

[θ̈]6 = [2, 1, 1, 0; 0, 0, 0, 0] 2 2 2 1

[θ̈]7 = [2, 1, 0, 0; 1, 0, 0, 0] 3 2 2 1

[θ̈]8 = [2, 0, 0, 0; 1, 1, 0, 0] 6 4 2 1

[θ̈]9 = [1, 1, 1, 1; 0, 0, 0, 0] 3 3 3 1

[θ̈]10 = [1, 1, 1, 0; 1, 0, 0, 0] 6 3 3 1

[θ̈]11 = [1, 1, 0, 0; 2, 0, 0, 0] 7 4 2 1

[θ̈]12 = [1, 1, 0, 0; 1, 1, 0, 0] 12 6 3 1

[θ̈]13 = [1, 0, 0, 0; 3, 0, 0, 0] 4 3 1 1

[θ̈]14 = [1, 0, 0, 0; 2, 1, 0, 0] 12 7 2 1

[θ̈]15 = [1, 0, 0, 0; 1, 1, 1, 0] 24 12 3 1

[θ̈]16 = [0, 0, 0, 0; 4, 0, 0, 0] 4 4 1 1

[θ̈]17 = [0, 0, 0, 0; 3, 1, 0, 0] 8 6 1 1

[θ̈]18 = [0, 0, 0, 0; 2, 2, 0, 0] 15 11 2 1

[θ̈]19 = [0, 0, 0, 0; 2, 1, 1, 0] 24 14 2 1

[θ̈]20 = [0, 0, 0, 0; 1, 1, 1, 1] 48 24 3 1

of (self-)enantiomers) at the intersection between the [θ̈]11-row and the PG′-column
in Table 10 (7 × ABp̈2).

The value 1 at the intersection between the [θ]12-row and the RS-SIG-column in
Table 3 (2 × 1

2 (ABp2 + ABp2)) and the value 2 at the intersection between the [θ]13-
row and the RS-SIG-column in Table 3 (2 × ABpp) are combined to give the value 4
(four quadruplets of RS-stereoisomers) at the intersection between the [θ̈]11-row and
the RS-SIG′-column in Table 10 (4 × ABp̈2).

The value 1 at the intersection between the [θ]12-row and the SIG-column in Table 3
(2 × 1

2 (ABp2 + ABp2)) and the value 2 at the intersection between the [θ]13-row and
the SIG-column in Table 3 (2 × ABpp) are combined, so as to give the value 2 at the
intersection between the [θ̈]11-row and the SIG′-column in Table 10 (2 × ABp̈2). To
explain this degeneration, the type-II stereoisogram of Fig. 5a (for the composition
1
2 (ABp2 + ABp2)) and the type-V stereoisogram of Fig. 6a (for the composition
ABpp) are combined, so as to construct one set of stereoisomers (for the composition
ABp̈2). On the other hand, the type-III stereoisogram of Fig. 5b (for the composition
1
2 (ABp2 + ABp2)) and the type-III stereoisogram of Fig. 6b (for the composition
ABpp) are combined, so as to construct the other one set of stereoisomers (for the
composition ABp̈2). Hence, the value 2 at the intersection between the [θ̈]11-row and
the SIG′-column in Table 10 (2 × ABp̈2) is confirmed by the appearance of the two
inequivalent sets of stereoisomers.
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As a result, Eqs. 60 and 61 are combined to give the following classification for
characterizing the [θ̈]11-row of Table 10:

{〈([

12
12

])

([15] [16])

〉 〈([

13
13

] [

14
14

]) ([

17
17

] [

18
18

])〉}

. (79)

Hence, Eq. 79 is consistent with the values appearing in the [θ̈]11-row of Table 10,
where seven pairs of square brackets indicate the number 7 of pairs of (self-)
enantiomers (the PG′-column), four pairs of parentheses indicate the number 4 of
quadruplets of RS-stereoisomers (the RS-SIG′-column), two pairs of angle brackets
indicate the number 2 of two sets of stereoisomers (the SIG′-column), and one pair of
braces indicates the number 1 of a set of isoskeletomers (the ISG′-column).

4.2.3 Ethylene skeleton

The group hierarchy for the ethylene skeleton 3 is given by Eq. 41, so that the CI-CF
for S[4]

6̂I
(Eq. 49) is used to calculate the numbers of pairs of enantiomers under the

point group D2h , where the ligand-inventory functions Eqs. 75–77 are used in place
of Eqs. 53–55. The calculated values are collected in the PG′-column of Table 11. The
RS-SIG′-column of Table 11 is identical with the PG′-column of Table 11.

Table 11 Numbers of isomers
derived from an ethylene
skeleton

Partition PG′ RS-SIG′ SIG′ ISG′
S[4]

6̂I
S[4]

6̂I
S[4]

9σ̂I
S[4]
σ̂I

(D2h ) (D2̂I )

[θ̈]1 = [4, 0, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]2 = [3, 1, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]3 = [3, 0, 0, 0; 1, 0, 0, 0] 1 1 1 1

[θ̈]4 = [2, 2, 0, 0; 0, 0, 0, 0] 3 3 2 1

[θ̈]5 = [2, 0, 0, 0; 2, 0, 0, 0] 6 6 2 1

[θ̈]6 = [2, 1, 1, 0; 0, 0, 0, 0] 3 3 2 1

[θ̈]7 = [2, 1, 0, 0; 1, 0, 0, 0] 3 3 2 1

[θ̈]8 = [2, 0, 0, 0; 1, 1, 0, 0] 6 6 2 1

[θ̈]9 = [1, 1, 1, 1; 0, 0, 0, 0] 6 6 3 1

[θ̈]10 = [1, 1, 1, 0; 1, 0, 0, 0] 6 6 3 1

[θ̈]11 = [1, 1, 0, 0; 2, 0, 0, 0] 6 6 2 1

[θ̈]12 = [1, 1, 0, 0; 1, 1, 0, 0] 12 12 3 1

[θ̈]13 = [1, 0, 0, 0; 3, 0, 0, 0] 4 4 1 1

[θ̈]14 = [1, 0, 0, 0; 2, 1, 0, 0] 12 12 2 1

[θ̈]15 = [1, 0, 0, 0; 1, 1, 1, 0] 24 24 3 1

[θ̈]16 = [0, 0, 0, 0; 4, 0, 0, 0] 5 5 1 1

[θ̈]17 = [0, 0, 0, 0; 3, 1, 0, 0] 8 8 1 1

[θ̈]18 = [0, 0, 0, 0; 2, 2, 0, 0] 18 18 2 1

[θ̈]19 = [0, 0, 0, 0; 2, 1, 1, 0] 24 24 2 1

[θ̈]20 = [0, 0, 0, 0; 1, 1, 1, 1] 48 48 3 1
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The numbers of inequivalent sets of stereoisomers are calculated by using the CI
(Eq. 72) of the stereoisomeric group S[4]

9σ̂I
and the ligand-inventory function represent-

ing by Eq. 73. The results collected in the SIG′-column of Table 11 are identical with
the the SIG′-column of Table 10 because the same group S[4]

9σ̂I
is applied to both of

the columns. The ISG′-column (for the isoskeletal group) of Table 11 is obtained by
using the CI (Eq. 71) according to the group hierarchy (Eq. 41).

The [θ̈]11-row of Table 11 corresponds to the [θ]12-row and the [θ]13-row of Table 4,
as found in the [θ̈]11-row of Table 9. In a similar way to the [θ̈]11-row of Table 10 for
the allene skeleton (cf. Eq. 79 derived from Eqs. 60 and 61), Eqs. 63 and 64 for the
ethylene skeleton are combined to give the following classification for characterizing
the [θ̈]11-row of Table 11:

{〈([

19
19

])([

20
20

])([

22
22

]) ([

23
23

])〉 〈([

21
21

]) ([

24
24

])〉}

. (80)

Hence, Eq. 80 is consistent with the values appearing in the [θ̈]11-row of Table 11,
where six pairs of square brackets indicate the number 6 of pairs of (self-)enantiomers
(the PG′-column), six pairs of parentheses indicate the number 6 of quadruplets of RS-
stereoisomers (the RS-SIG′-column), two pairs of angle brackets indicate the number
2 of two sets of stereoisomers (the SIG′-column), and one pair of braces indicates the
number 1 of a set of isoskeletomers (the ISG′-column).

The validity of Eq. 80 can be confirmed diagrammatically. Thus, the two stereoiso-
grams shown in Fig. 7a, b (for representing Z/E-isomers) and the two stereoisograms
shown in Fig. 8a, b (for representing Z/E-isomers) are gathered to generate the one set
of stereoisomers, which is enclosed in a pair of angle brackets in Eq. 80. On the other
hand, the stereoisogram shown in Fig. 7c and the stereoisograms shown in Fig. 8c are
gathered to generate the other one set of stereoisomers, which is enclosed in another
pair of angle brackets in Eq. 80. Finally, the two sets of stereoisomers are equivalence
under the action of the isoskeletal group S[4]

σ̂I
, so that they are enclosed in a pair of

braces in Eq. 80 and there appears the value 1 at the intersection between the [θ̈]11-row
and the ISG′-column in Table 11.

4.2.4 Oxirane skeleton

Because the group hierarchy for the oxirane skeleton 4 is given by Eq. 42, the CI-CF
for S[4]

2σ̂ (Eq. 51) is used to calculate the numbers of pairs of enantiomers under the
point group C2v , where the ligand-inventory functions Eqs. 75–77 are used in place
of Eqs. 53–55. The calculated values are collected in the PG′-column of Table 12.
The RS-SIG′-column of Table 12 is calculated by using the CI-CF for S[4]

6̂I
(Eq. 49),

where the ligand-inventory functions Eqs. 75–77 are used. The SIG′-column and the
ISG′-column of Table 12 for the oxirane skeleton are identical with those of Table 11
for the ethylene skeleton because of the application of the same groups.

The [θ̈]11-row of Table 12 corresponds to the [θ]12-row and the [θ]13-row of Table
5, as found in the [θ̈]11-row of Table 9. In a similar way to the [θ̈]11-row of Table 10
for the allene skeleton (cf. Eq. 79 derived from Eqs. 60 and 61), Eqs. 66 and 67 for the
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Table 12 Numbers of isomers
derived from an oxirane skeleton

Partition PG′ RS-SIG′ SIG′ ISG′
S[4]

2σ̂ S[4]
6̂I

S[4]
9σ̂I

S[4]
σ̂I

(C2v) (C2vσ̃̂I )

[θ̈]1 = [4, 0, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]2 = [3, 1, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]3 = [3, 0, 0, 0; 1, 0, 0, 0] 2 1 1 1

[θ̈]4 = [2, 2, 0, 0; 0, 0, 0, 0] 3 3 2 1

[θ̈]5 = [2, 0, 0, 0; 2, 0, 0, 0] 9 6 2 1

[θ̈]6 = [2, 1, 1, 0; 0, 0, 0, 0] 3 3 2 1

[θ̈]7 = [2, 1, 0, 0; 1, 0, 0, 0] 6 3 2 1

[θ̈]8 = [2, 0, 0, 0; 1, 1, 0, 0] 12 6 2 1

[θ̈]9 = [1, 1, 1, 1; 0, 0, 0, 0] 6 6 3 1

[θ̈]10 = [1, 1, 1, 0; 1, 0, 0, 0] 12 6 3 1

[θ̈]11 = [1, 1, 0, 0; 2, 0, 0, 0] 12 6 2 1

[θ̈]12 = [1, 1, 0, 0; 1, 1, 0, 0] 24 12 3 1

[θ̈]13 = [1, 0, 0, 0; 3, 0, 0, 0] 8 4 1 1

[θ̈]14 = [1, 0, 0, 0; 2, 1, 0, 0] 24 12 2 1

[θ̈]15 = [1, 0, 0, 0; 1, 1, 1, 0] 48 24 3 1

[θ̈]16 = [0, 0, 0, 0; 4, 0, 0, 0] 7 5 1 1

[θ̈]17 = [0, 0, 0, 0; 3, 1, 0, 0] 16 8 1 1

[θ̈]18 = [0, 0, 0, 0; 2, 2, 0, 0] 30 18 2 1

[θ̈]19 = [0, 0, 0, 0; 2, 1, 1, 0] 48 24 2 1

[θ̈]20 = [0, 0, 0, 0; 1, 1, 1, 1] 96 48 3 1

oxirane skeleton are combined to give the following classification for characterizing
the [θ̈]11-row of Table 12:

{〈([

25
25

] [

26
26

]) ([

27
27

] [

28
28

])([

31
31

] [

32
32

]) ([

33
33

] [

34
34

])〉

〈([

29
29

] [

30
30

]) ([

35
35

] [

36
36

])〉}

. (81)

Hence, Eq. 81 is consistent with the values appearing in the [θ̈]11-row of Table
12, where twelve pairs of square brackets indicate the number 12 of pairs of
(self-)enantiomers (the PG′-column), six pairs of parentheses indicate the number
6 of quadruplets of RS-stereoisomers (the RS-SIG′-column), two pairs of angle brack-
ets indicate the number 2 of two sets of stereoisomers (the SIG′-column), and one pair
of braces indicates the number 1 of a set of isoskeletomers (the ISG′-column).

By referring to the stereoisograms shown in Figs. 9 and 10, the validity of Eq. 81 can
be confirmed diagrammatically. Thus, the two stereoisograms shown in Fig. 9a, b (for
representing Z/E-isomers) and the two stereoisograms shown in Fig. 10a, b (for rep-
resenting Z/E-isomers) are combined to generate the one set of stereoisomers, which
is enclosed in a pair of angle brackets in Eq. 81. On the other hand, the stereoisogram
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shown in Fig. 9c and the stereoisograms shown in Fig. 10c are combined to generate
the other one set of stereoisomers, which is enclosed in another pair of angle brack-
ets in Eq. 81. The two sets of stereoisomers are equivalent under the action of the
isoskeletal group S[4]

σ̂I
, They are enclosed in a pair of braces in Eq. 81, so that there

appears the value 1 at the intersection between the [θ̈]11-row and the ISG′-column in
Table 12.

4.2.5 Square planar skeleton

Because the group hierarchy for the square planar skeleton 5 is given by Eq. 43, the CI-
CF for S[4]

9σ̂I
(Eq. 47) is used to calculate the numbers of pairs of enantiomers under the

point group D4h , where the ligand-inventory functions Eqs. 75–77 are used in place
of Eqs. 53–55. The calculated values are collected in the PG′-column of Table 13.
The RS-SIG′-column of Table 13 is identical with the PG′-column. The SIG′-column
and the ISG′-column of Table 13 for the square planar skeleton are identical with the
ISG′-column of Table 11 for the ethylene skeleton because of the application of the
same group.

According to the correspondence shown in Table 9, the [θ̈] j -row of Table 13 cor-
responds to the counterpart rows of Table 6.

Table 13 Numbers of isomers
derived from a square planar
skeleton

Partition PG′ RS-SIG′ SIG′ ISG′
S[4]

9σ̂I
S[4]

9σ̂I
S[4]
σ̂I

S[4]
σ̂I

(D4h ) (D4̂I )

[θ̈]1 = [4, 0, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]2 = [3, 1, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]3 = [3, 0, 0, 0; 1, 0, 0, 0] 1 1 1 1

[θ̈]4 = [2, 2, 0, 0; 0, 0, 0, 0] 2 2 1 1

[θ̈]5 = [2, 0, 0, 0; 2, 0, 0, 0] 4 4 1 1

[θ̈]6 = [2, 1, 1, 0; 0, 0, 0, 0] 2 2 1 1

[θ̈]7 = [2, 1, 0, 0; 1, 0, 0, 0] 2 2 1 1

[θ̈]8 = [2, 0, 0, 0; 1, 1, 0, 0] 4 4 1 1

[θ̈]9 = [1, 1, 1, 1; 0, 0, 0, 0] 3 3 1 1

[θ̈]10 = [1, 1, 1, 0; 1, 0, 0, 0] 3 3 1 1

[θ̈]11 = [1, 1, 0, 0; 2, 0, 0, 0] 4 4 1 1

[θ̈]12 = [1, 1, 0, 0; 1, 1, 0, 0] 6 6 1 1

[θ̈]13 = [1, 0, 0, 0; 3, 0, 0, 0] 3 3 1 1

[θ̈]14 = [1, 0, 0, 0; 2, 1, 0, 0] 7 7 1 1

[θ̈]15 = [1, 0, 0, 0; 1, 1, 1, 0] 12 12 1 1

[θ̈]16 = [0, 0, 0, 0; 4, 0, 0, 0] 4 4 1 1

[θ̈]17 = [0, 0, 0, 0; 3, 1, 0, 0] 6 6 1 1

[θ̈]18 = [0, 0, 0, 0; 2, 2, 0, 0] 11 11 1 1

[θ̈]19 = [0, 0, 0, 0; 2, 1, 1, 0] 14 14 1 1

[θ̈]20 = [0, 0, 0, 0; 1, 1, 1, 1] 24 24 1 1
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For example, the [θ̈]11-row of Table 13 corresponds to the [θ]12-row and the [θ]13-
row of Table 6. The value 1 at the intersection between the [θ]12-row and the PG-
column in Table 6 (2 × 1

2 (ABp2 + ABp2)) and the value 2 at the intersection between
the [θ]13-row and the PG-column in Table 6 (2 × ABpp) are combined to give the
value 4 (four pairs of (self-)enantiomers) at the intersection between the [θ̈]11-row and
the PG′-column in Table 13 (4 × ABp̈2). The RS-SIG′-column in Table 13 is identical
with the PG′-column.

The value 1/2 at the intersection between the [θ]12-row and the SIG-column in
Table 6 (1 × 1

2 (ABp2 + ABp2)) and the value 1 at the intersection between the [θ]13-
row and the SIG-column in Table 6 (1 × ABpp) are combined to construct one set of
stereoisomers. It follows that there appears the value 1 at the intersection between the
[θ̈]11-row and the SIG′-column in Table 13 (1 × ABp̈2).

4.2.6 Square pyramidal skeleton

According to the group hierarchy for the square pyramidal skeleton 6 (Eq. 44), the
CI-CF for S[4]

5σ σ̂ (Eq. 50) is used to calculate the numbers of pairs of enantiomers under
the point group C4v , where Eqs. 75–77 are used as ligand-inventory functions. The
calculated values are collected in the PG′-column of Table 14. The RS-SIG′-column of

Table 14 Numbers of isomers
derived from a square pyramidal
skeleton

Partition PG′ RS-SIG′ SIG′ ISG′
S[4]

5σ σ̂
S[4]

9σ̂I
S[4]
σ̂I

S[4]
σ̂I

(C4v) (C4vσ̃̂I )

[θ̈]1 = [4, 0, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]2 = [3, 1, 0, 0; 0, 0, 0, 0] 1 1 1 1

[θ̈]3 = [3, 0, 0, 0; 1, 0, 0, 0] 1 1 1 1

[θ̈]4 = [2, 2, 0, 0; 0, 0, 0, 0] 2 2 1 1

[θ̈]5 = [2, 0, 0, 0; 2, 0, 0, 0] 5 4 1 1

[θ̈]6 = [2, 1, 1, 0; 0, 0, 0, 0] 2 2 1 1

[θ̈]7 = [2, 1, 0, 0; 1, 0, 0, 0] 3 2 1 1

[θ̈]8 = [2, 0, 0, 0; 1, 1, 0, 0] 6 4 1 1

[θ̈]9 = [1, 1, 1, 1; 0, 0, 0, 0] 3 3 1 1

[θ̈]10 = [1, 1, 1, 0; 1, 0, 0, 0] 6 3 1 1

[θ̈]11 = [1, 1, 0, 0; 2, 0, 0, 0] 7 4 1 1

[θ̈]12 = [1, 1, 0, 0; 1, 1, 0, 0] 12 6 1 1

[θ̈]13 = [1, 0, 0, 0; 3, 0, 0, 0] 4 3 1 1

[θ̈]14 = [1, 0, 0, 0; 2, 1, 0, 0] 12 7 1 1

[θ̈]15 = [1, 0, 0, 0; 1, 1, 1, 0] 24 12 1 1

[θ̈]16 = [0, 0, 0, 0; 4, 0, 0, 0] 4 4 1 1

[θ̈]17 = [0, 0, 0, 0; 3, 1, 0, 0] 8 6 1 1

[θ̈]18 = [0, 0, 0, 0; 2, 2, 0, 0] 15 11 1 1

[θ̈]19 = [0, 0, 0, 0; 2, 1, 1, 0] 24 14 1 1

[θ̈]20 = [0, 0, 0, 0; 1, 1, 1, 1] 48 24 1 1
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Table 13 is calculated by using the CI-CF for S[4]
9σ̂I

(Eq. 47), where the ligand-inventory
functions Eqs. 75–77 are used. The SIG′-column and the ISG′-column of Table 14 for
the square pyramidal skeleton are identical with the ISG′-column of Table 13 for the
square planar skeleton because of the application of the same group.

The [θ̈] j -row of Table 14 corresponds to the counterpart rows of Table 7 according
to the correspondence shown in Table 9.

For example, the [θ̈]11-row of Table 14 corresponds to the [θ]12-row and the [θ]13-
row of Table 7. The value 3/2 at the intersection between the [θ]12-row and the PG-
column in Table 7 (3 × 1

2 (ABp2 + ABp2)) and the value 4 at the intersection between
the [θ]13-row and the PG-column in Table 7 (4 × ABpp) are combined to give the
value 7 (seven pairs of (self-)enantiomers) at the intersection between the [θ̈]11-row
and the PG′-column in Table 14 (7 × ABp̈2). In a similar way, the RS-SIG′-column in
Table 14 can be correlated to the counterparts in Table 7.

The value 1/2 at the intersection between the [θ]12-row and the SIG-column in
Table 7 (1 × 1

2 (ABp2 + ABp2)) and the value 1 at the intersection between the [θ]13-
row and the SIG-column in Table 7 (1 × ABpp) are combined to construct one set of
stereoisomers. It follows that there appears the value 1 at the intersection between the
[θ̈]11-row and the SIG′-column in Table 14 (1 × ABp̈2).

5 Conclusion

The proligand method developed originally for combinatorial enumeration under
point groups [16–18] is extended to meet the group hierarchy due to the stereoiso-
gram approach [29,30]. Thereby, it becomes applicable to enumeration under RS-
stereoisomeric groups, under stereoisomeric groups, as well as under isoskeletal
groups. Combinatorial enumerations are conducted to count pairs of (self-)enantiomers
under a point group, quadruplets of RS-stereoisomers under an RS-stereoisomeric
group, sets of stereoisomers under a stereoisomeric group, and sets of isoskeletomers
under an isoskeletal group, where stereoskeletons of ligancy 4 (a tetrahedral skeleton,
an allene skeleton, an ethylene skeleton, an oxirane skeleton, a square planar skeleton,
and a square pyramidal skeleton) are used as examples. Two kinds of compositions are
used for the purpose of representing molecular formulas in an abstract fashion, that is to
say, the compositions represented by the partitions [θ]i (i = 1–30) for differentiating
proligands having opposite chirality senses and the compositions represented by the
partitions [θ̈] j (i = 1–20) for equalizing proligands having opposite chirality senses.
Thereby, the classifications of isomers are accomplished in a systematic fashion.
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